精英家教网 > 高中数学 > 题目详情

【题目】如图所示,某地区打算在一块矩形地块上修建一个牧场(ABCDEF围成的封闭区域)用来养殖牛和羊,其中AF=1AB=10BC=4CD=7(单位:百米),DEF是一段曲线形马路.该牧场的核心区为等腰直角三角形MPQ所示区域,该区域用来养殖羊,其余区域养殖牛,且MP=PQ,牧场大门位于马路DEF上的M处,一个观察点P位于AB的中点处,为了能够更好观察动物的生活情况,现决定修建一条观察通道,起点位于距离观察点P1百米的O点所示位置,终点位于Q.如图2所示,建立平面直角坐标系,若满足.

1)求的解析式;

2)求观察通道OQ长度的最小值.

【答案】12百米

【解析】

1)依题意求出点代入解析式即可求解;

2)过点MQ分别作x轴的垂线,垂足为,可得

再对分类讨论,利用导数及二次函数的性质求出最小值;

解:(1)因为AB=10PAB的中点,所以AP=5

OP=1,所以AO=4,所以

因为CD=7BC=4AF=1所以

得,k=-4,所以.

,又,所以解得

所以

2)过点MQ分别作x轴的垂线,垂足为

又因为PMPQ,所以

所以,又因为PM=PQ,所以

所以,由,可得

①若,设,则

.

,则

,因为,所以

所以上单调减,所以

,则上单调减

所以,所以

②若,设,则

上单调递减,所以时,

所以OQ的长度的最小值为百米.

答:观察通道OQ的长度的最小值为百米

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线过点

1)求抛物线的方程,并求其焦点坐标与准线方程;

2)直线与抛物线交于不同的两点过点轴的垂线分别与直线交于两点,其中为坐标原点.为线段的中点,求证:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在直三棱柱ABCA1B1C1AA1ABAC2,ABACM是棱BC的中点点P在线段A1B

(1)若P是线段A1B的中点,求直线MP与直线AC所成角的大小;

(2)若的中点,直线与平面所成角的正弦值为,求线段BP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)= f1(x)+ f2(x).

(Ⅰ) 求函数f(x)的表达式;

(Ⅱ) 证明:a>3,关于x的方程f(x)= f(a)有三个实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Ox2+y23,直线PA与圆O相切于点A,直线PB垂直y轴于点B,且|PB|2|PA|.

1)求点P的轨迹E的方程;

2)过点(10)且与x轴不重合的直线与轨迹E相交于PQ两点,在x轴上是否存在定点D,使得x轴是∠PDQ的角平分线,若存在,求出D点坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直四棱柱中,底面是边长为6的正方形,点在线段上,且满足,过点作直四棱柱外接球的截面,所得的截面面积的最大值与最小值之差为,则直四棱柱外接球的半径为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,大摆锤是一种大型游乐设备,常见于各大游乐园.游客坐在圆形的座舱中,面向外.通常大摆锤以压肩作为安全束缚,配以安全带作为二次保险.座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.今年五一,小明去某游乐园玩大摆锤,他坐在点A处,大摆锤启动后,主轴在平面内绕点O左右摆动,平面与水平地面垂直,摆动的过程中,点A在平面内绕点B作圆周运动,并且始终保持.已知,在大摆锤启动后,给出下列结论:

①点A在某个定球面上运动;

②线段在水平地面上的正投影的长度为定值;

③直线与平面所成角的正弦值的最大值为

与水平地面所成角记为,直线与水平地面所成角记为,当时,为定值.

其中正确结论的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)若a=1,且f(x)≥m(0+∞)恒成立,求实数m的取值范围;

2)当时,若x=0不是f(x)的极值点,求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个不同的球随机地放入编号为12个盒子内,求1号盒恰有个球的概率.

查看答案和解析>>

同步练习册答案