精英家教网 > 高中数学 > 题目详情
13.已知实数x,y满足$\left\{\begin{array}{l}{x+y-4≤0}\\{y-1≥0}\\{x-1≥0}\end{array}\right.$,则z=$\frac{y-1}{x}$的最大值是2.

分析 画出满足条件的平面区域,求出角点的坐标,结合z=$\frac{y-1}{x}$的几何意义求出z的最大值即可.

解答 解:画出满足条件的平面区域,如图示:
由$\left\{\begin{array}{l}{x+y-4=0}\\{x=1}\end{array}\right.$,解得:A(1,3),
∴z=$\frac{y-1}{x}$的最大值是2,
故答案为:2.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.定义在R上的偶函数f(x)=$\frac{ax+b}{{x}^{2}+c}$的图象如图所示,则实数a、b、c的大小关系是b>c>a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)=sinx-cos(x-\frac{π}{6})$的值域为(  )
A.$[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$B.$[-\sqrt{3},\sqrt{3}]$C.[-2,2]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若空间向量$\overrightarrow a,\overrightarrow b$满足:$(\overrightarrow a+\overrightarrow b)⊥(2\overrightarrow a-\overrightarrow b)$,$(\overrightarrow a-2\overrightarrow b)⊥(2\overrightarrow a+\overrightarrow b)$,则cos<$\overrightarrow a,\overrightarrow b>$=$-\frac{{\sqrt{10}}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数$f(x)=|x+\frac{1}{a}|+|x-a|(a>0)$.
(1)求证:f(x)≥2;
(2)若f(2)<4,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.有下列四个命题:
①“若xy=1,则x,y互为倒数”的逆命题;
②“面积相等的三角形全等”的否命题;
③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;
④“若A∩B=B,则A=B”的逆否命题.
其中真命题为(  )
A.①②B.②③C.①④D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设等比数列{an}中,每项均是正数,且a5a6=81,则log${\;}_{\frac{1}{3}}$a1+log${\;}_{\frac{1}{3}}$a2+log${\;}_{\frac{1}{3}}$a3+…+log${\;}_{\frac{1}{3}}$a10=(  )
A.20B.-20C.-4D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=$\frac{{x}^{2}}{{e}^{x}}$的单调递增区间为[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线C:y2=-4x.
(Ⅰ)写出抛物线C的焦点坐标、准线方程、焦点到准线的距离;
(Ⅱ)直线l过定点P(1,2),斜率为k,当k为何值时,直线l与抛物线:只有一个公共点;两个公共点;没有公共点.

查看答案和解析>>

同步练习册答案