精英家教网 > 高中数学 > 题目详情
2cos25°-cos85°
sin25°+
3
cos25°
=
 
考点:两角和与差的正弦函数
专题:三角函数的求值
分析:由两角和与差的正弦函数公式展开后根据诱导公式化简即可求值.
解答: 解:
2cos25°-cos85°
sin25°+
3
cos25°
=
2sin65°-sin5°
2sin(25°+60°)
=
2sin60°cos5°+2cos60°sin5°-sin5°
2cos5°
=
3
cos5°
2cos5°
=
3
2

故答案为:
3
2
点评:本题主要考查了两角和与差的正弦函数公式,诱导公式化简求值,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:x2-2x-3>0,命题q:
1
3-x
1,若¬q且p为真.则x的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是某一个几何体的三视图,则该几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
21
+5)sinθ-7cosθ=2-
21
,求sinθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),设函数f(x)=
m
n
+1.
(Ⅰ)求f(x)的单调区间;
(2)若x∈[0,
π
2
],f(x)=
11
10
,求cosx值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为奇函数,且在(-∞,0)内是增函数,又f(-2)=0,则f(x)<0的解集为(  )
A、(-2,0)∪(0,2)
B、(-∞,-2)∪(0,2)
C、(-∞,-2)∪(2,+∞)
D、(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是某同学求50个奇数3,5,7,…,101的平均数而设计的程序框图的部分内容,则在该程序框图中的空白判断框和处理框中应填入的内容依次是(  )
A、i>100,x=
x
50
B、i≥100,x=
x
100
C、i<100,x=
x
50
D、i≤100,x=
x
100

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,多面体ABCDEF中,四边形ABCD是边长为2a的正方形,平面ADEF垂直于平面ABCD,且FA⊥AD,EF∥AD,EF=AF=a.
(1)求证:BD⊥CF;
(2)若P、Q分别为棱BF和DE的中点,求证:PQ∥平面ABCD;
(3)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+an+1=an2+bn+1(a,b为常数,n∈N*
(1)如果{an}为等差数列,求a,b的值;
(2)如果{an}为单调递增数列,求a+b的取值范围.

查看答案和解析>>

同步练习册答案