精英家教网 > 高中数学 > 题目详情
(2013•德州一模)若正项数列{an}满足1gan+1=1+1gan,且a2001+a2002+a2003+…a2010=2013,则a2011+a2012+a2013+…a2020的值为(  )
分析:由对数式可得正项数列{an}为等比数列,且公比q=10,而所求的式子等于(a2001+a2002+a2003+…a2010)q10,代值可得.
解答:解:由题意可得1gan+1-1gan=lg
an+1
an
=1,即
an+1
an
=10,
所以正项数列{an}为等比数列,且公比q=10,
所以a2011+a2012+a2013+…a2020
=(a2001+a2002+a2003+…a2010)q10=2013•1010
故选A
点评:本题考查等比数列的判断和等比数列的性质,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•德州一模)命题“?x∈R,x2-2x=0”的否定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)在△ABC中,角A,B,C的对边分别为a,b,c,已知角A=
π
3
,sinB=3sinC.
(1)求tanC的值;
(2)若a=
7
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)直线y=-
3
3
x+m与圆x2+y2=1在第一象限内有两个不同的交点,则m取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)设集合A={x|x2-5x-6<0},B={x|5≤x≤7},则A∩B=(  )

查看答案和解析>>

同步练习册答案