精英家教网 > 高中数学 > 题目详情
6.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知$\frac{sinB}{sinA+sinC}$=$\frac{a+b-c}{a+b}$.
(1)求角A的大小;
(2)若B=$\frac{π}{2}$,AB=4$\sqrt{3}$,点D是斜边AC上的一个动点,连接BD,以BD为折痕,将△BDA翻折,使点A落在平面BCD内点A1处,连接A1C,如图,求A1C的最小值.

分析 (1)由正弦定理化简已知整理可得b2+c2-a2=bc,由余弦定理可得cosA=$\frac{1}{2}$,结合范围A∈(0,π),即可求A.
(2)求出∠A1AC,由三角形性质知,边所对应角最小时,边长最小,当∠A1AC=θ-30°=0时,即可求A1C的最小值.

解答 解:(1)在△ABC中,∵$\frac{sinB}{sinA+sinC}$=$\frac{a+b+c}{a+b}$=$\frac{b}{a+c}$,∴整理可得:b2+c2-a2=bc,
∴由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$.
(2)以BD为折痕,将△ABD折到与△ADC到同一个平面内,
设∠ABD=θ.则AB=BA1,∠ABD=∠A1BD=θ,
∴∠A1AC=60°-$\frac{180°-2θ}{2}$=θ-30°,
由三角形性质知,边所对应角最小时,边长最小,故当∠A1AC=θ-30°=0时,A1C最小,
即θ=30°,
可知BD⊥AC,BD=6,
则AA1=4$\sqrt{3}$,得出A1C=AC-AA1=8$\sqrt{3}-4\sqrt{3}$=4$\sqrt{3}$,
∴A1C的最小值为4$\sqrt{3}$.

点评 本题考查利用数学知识解决实际问题,考查正弦定理,余弦定理的应用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设等差数列{an}的前n项和为Sn,若a3=-11,a6+a10=-2,则当Sn取最小值时,n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:
(1)求出y与x之间的函数关系式;
(2)写出每天的利润W与销售单价x之间的函数关系式;
若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)=\frac{x^2}{{{x^2}-9}}$,g(x)=x-3,$h(x)=\frac{3x}{x+3}$,则f(x)g(x)+h(x)=x(x≠±3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果a<b,那么下列不等式一定成立的是(  )
A.c-a<c-bB.-2a>-2bC.a+c>b+cD.a+d>b+c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数$f(x)={x^2}-2x-3,g(x)=\frac{1}{{\sqrt{3+2x-{x^2}}}}$,则f(x)•g(x)=-$\sqrt{3+2x-{x}^{2}}$,x∈(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设A(-1,0),B(1,4),动点P满足$\overrightarrow{PA}$•$\overrightarrow{PB}$=4,求:
(1)动点P的轨迹方程;
(2)若点Q是关于直线P关于直线y=x-4的对称点,求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}满足${a_1}=\frac{1}{5},{a_n}+{a_{n+1}}=\frac{6}{{{5^{n+1}}}}(n∈{N^*})$,则$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知奇函数f(x)在(0,+∞)上单调递减,且满足f(2)=0,则不等式$\frac{f(x)-f(-x)}{x}<0$的解集为(  )
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(2,+∞)C.(-∞,-2)∪(0,2)D.(-2,0)∪(0,2)

查看答案和解析>>

同步练习册答案