精英家教网 > 高中数学 > 题目详情
(2012•江西模拟)在各项均为正数的等比数列{an}中,(a1+a3)(a5+a7)=4
a
2
4
,则下列结论中正确的是(  )
分析:由条件利用等比数列的定义和性质可得 a32+a52=2 a42,设公比为q,则得 a12q4+a12q8=2a12q6,求得 q2=1,q=1,由此得出结论.
解答:解:各项均为正数的等比数列{an}中,∵(a1+a3)(a5+a7)=4
a
2
4
 成立,即 a1a5+a1a7+a3a5+a3a7=4a42成立.
利用等比数列的定义和性质化简可得 a32+a42+a42+a52=4a42,进一步化简得 a32+a52=2 a42
设公比为q,则得 a12q4+a12q8=2a12q6,化简可得 1+q4=2q2,即 (q2-1)2=1,
∴q2=1,故q=1.(由于各项均为正数的等比数列,故q=-1舍去)
故此等比数列是常数列,
故选 C.
点评:本题主要考查等比数列的定义和性质,求得 q2=1,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西模拟)球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,面SAB⊥面ABC,则棱锥S-ABC的体积的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)在△ABC中,P是BC边中点,角A、B、C的对边分别是a、b、c,若c
AC
+a
PA
+b
PB
=
0
,则△ABC的形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知数列{an}是各项均不为0的等差数列,公差为d,Sn 为其前n项和,且满足an2=S2n-1,n∈N*.数列{bn}满足bn=
1anan+1
,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式和Tn
(2)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn,成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1
,x∈R,将函数f(x)向左平移
π
6
个单位后得函数g(x),设△ABC三个角A、B、C的对边分别为a、b、c.
(Ⅰ)若c=
7
,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且
m
=(cosA,cosB)
n
=(1,sinA-cosAtanB)
,求
m
n
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐进线的交点分别为B、C.若
AB
=
1
2
BC
,则双曲线的离心率是
5
5

查看答案和解析>>

同步练习册答案