精英家教网 > 高中数学 > 题目详情
f(x)=
2x,x≥1
f(x+2),x<1
,则f(log0.51.5)=(  )
A、-
3
8
B、
3
8
C、-
8
3
D、
8
3
分析:大体判断log0.51.5的范围,确定应代入哪个解析式.直到转化到自变量大于1时,转化为指数式的求解,利用指数的运算法则为哦和对数恒等式即可求出结果.
解答:解:log0.51.5=1-log23∈(-1,0),2+log0.51∈(1,2)
所以f(log0.51.5)=f(2+log0.51.5)=22+log0.51.5=222-log21.5=4×
1
1.5
=
8
3

故选D
点评:本题考查指数、对数的运算、对数恒等式、及分段函数求值,考查运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a),设函数f(x)=lnx+
b+2x+1
(x>1)
,其中b为实数.
(1)①求证:函数f(x)具有性质P(b);
②求函数f(x)的单调区间.
(2)已知函数g(x)具有性质P(2),给定x1,x2∈(1,+∞),x1<x2,设m为实数,α=mx1+(1-m)x2,β=(1-m)x1+mx2,α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=1-2
x
,g(x)=
1-x
+2
x
,则f(x)+g(x)=
1+
1-x
,x∈{x|0≤x≤1}
1+
1-x
,x∈{x|0≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)给出以下命题:
①函数f(x)=|log2x2|既无最大值也无最小值;
②函数f(x)=|x2-2x-3|的图象关于直线x=1对称;
③若函数f(x)的定义域为(0,1),则函数f(x2)的定义域为(-1,1);
④若函数f(x)满足|f(-x)|=|f(x)|,则函数f(x)或是奇函数或是偶函数;
⑤设f(x)与g(x)是定义在R上的两个函数,若对任意x1,x2∈R(x1≠x2)有|f(x1)-f(x2)|>|g(x1)-g(x2)|恒成立,且函数f(x)在R上递增,则函数h(x)=f(x)-g(x)在R上递增.
其中正确的命题是
②④⑤
②④⑤
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
2x,x<0
a+2x,x≥0
,若
f[f(-1)]=2,则a=(  )
A、2B、1C、-2D、-1

查看答案和解析>>

同步练习册答案