【题目】已知函数,其中
(1)若函数在区间上不单调,求的取值范围;
(2)若函数在区间上有极大值,求的值.
【答案】(1); (2).
【解析】
(1)由函数,其中x>0,a∈R.可得.由题意可得:在区间(1,+∞)上有解,分离参数可得: 上有解.设,利用到时讨论其的单调性即可得出.
(2)当a≥0时,函数f(x)在[1,+∞)上单调递增,此时无极值.
当时,函数f(x)在[1,+∞)上单调递减,此时无极值.
当时,,得..(其中)
.所以函数f(x)在[1,α)上单调递减,在(α,β)上单调递增,在(β,+∞)上单调递减,由极大值,又aβ2+β-1=0,消去a利用导数研究函数的单调性进而得出.
(1)因为,
所以上有解,
所以 上有解.
设
所以函数在上是减函数,在上是增函数,
所以
经验证,当时,函数上单调,
所以.
(2)当 所以.
当时, 所以.
当时,由,得.
(其中)
所以函数在上单调递减,在上单调递增,在上单调递减,
由极大值.
又
设函数,则,
所以函数在上单调递增.
而所以
故当时,.
科目:高中数学 来源: 题型:
【题目】已知椭圆,P是椭圆的上顶点,过点P作斜率为的直线l交椭圆于另一点A,设点A关于原点的对称点为B
(1)求面积的最大值;
(2)设线段PB的中垂线与y轴交于点N,若点N在椭圆内部,求斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和,并将两弧各五等分,分点依次为、、、、、以及、、、、、.一只蚂蚁欲从点出发,沿正方体的表面爬行至,则其爬行的最短距离为________.参考数据:;;)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某数学教师在甲、乙两个平行班采用“传统教学”和“高效课堂”两种不同的教学模式进行教学实验.为了解教改实效,期中考试后,分别从两个班中各随机抽取名学生的数学成绩进行统计,得到如下的茎叶图:
(1)求甲、乙两班抽取的分数的中位数,并估计甲、乙两班数学的平均水平和分散程度(不要求计算出具体值,给出结论即可);
(2)若规定分数在的为良好,现已从甲、乙两班成绩为良好的同学中,用分层抽样法抽出位同学参加座谈会,要再从这位同学中任意选出人发言,求这人来自不同班的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】冠状病毒是一个大型病毒家族,已知的有中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重的疾病,新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株,某小区为进一步做好新型冠状病毒肺炎疫情知识的教育,在小区内开展“新型冠状病毒防疫安全公益课”在线学习,在此之后组织了“新型冠状病毒防疫安全知识竞赛”在线活动.已知进入决赛的分别是甲、乙、丙、丁四位业主,决赛后四位业主相应的名次为第1,2,3,4名,该小区为了提高业主们的参与度和重视度,邀请小区内的所有业主在比赛结束前对四位业主的名次进行预测,若预测完全正确将会获得礼品,现用表示某业主对甲、乙、丙、丁四位业主的名次做出一种等可能的预测排列,记.
(1)求出的所有可能情形;
(2)若会有小礼品赠送,求该业主获得小礼品的概率,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com