精英家教网 > 高中数学 > 题目详情

【题目】手机等数码产品中的存储器核心部件是闪存芯片,闪存芯片有两个独立的性能指标:数据传输速度和使用寿命,数据传输速度的单位是,使用寿命指的是完全擦写的次数(单位:万次).某闪存芯片制造厂为了解产品情况,从一批闪存芯片中随机抽取了100件作为样本进行性能测试,测试数据经过整理得到如下的频率分布直方图(每个分组区间均为左闭右开),其中成等差数列且.

1)估计样本中闪存芯片的数据传输速度的中位数.

2)估计样本中闪存芯片的使用寿命的平均数.(每组数据以中间值为代表)

3)规定数据传输速度不低于为优,使用寿命不低于10万次为优,且两项指标均为优的闪存芯片为级产品,仅有一项为优的为级产品,没有优的为级产品.现已知样本中有45级产品,用样本中不同级别产品的频率代替每件产品为相应级别的概率,从这一批产品中任意抽取4件,求其中至少有2级产品的概率.

【答案】129.330.1808

【解析】

1)结合等差数列的性质,得出,再由频率分布直方图计算中位数的方法求解即可;

2)利用频率分布直方图计算平均数的方法求解即可;

3)根据题意得出级产品的件数,并得出任意一件产品为级产品的概率为,结合二项分布的性质得出从这一批产品中任意抽取4件,其中级产品的数量服从二项分布,由二项分布性质即可得出所求概率.

1)由题意得

,解得.

因为前四组的频率之和为

所以估计样本中闪存芯片的数据传输速度的中位数为

2)估计样本中闪存芯片的使用寿命的平均数为

.

3)样本中数据传输速度为优的产品有

使用寿命为优的产品有

至少有一项为优的产品有件,所以级产品有.

故任意一件产品为级产品的概率为.

则从这一批产品中任意抽取4件,其中级产品的数量服从二项分布.

故所求的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市为了了解该市教师年龄分布情况,对年龄在内的5000名教师进行了抽样统计,根据分层抽样的结果,统计员制作了如下的统计表格:

年龄区间

教师人数

2000

1300

样本人数

130

由于不小心,表格中部分数据被污染,看不清了,统计员只记得年龄在的样本人数比年龄在的样本人数多10,根据以上信息回答下列问题:

1)求该市年龄在的教师人数;

2)试根据上表做出该市教师按照年龄的人数频率分布直方图,并求该市教师年龄的平均数及方差(同一组的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金,保险公司把企业的所有岗位共分为三类工种,从事这三类工种的人数分别为12000,6000,2000,由历史数据统计出三类工种的赔付频率如下表(并以此估计赔付概率):

已知三类工种职工每人每年保费分别为25元、25元、40元,出险后的赔偿金额分别为100万元、100万元、50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.

(1)求保险公司在该业务所或利润的期望值;

(2)现有如下两个方案供企业选择:

方案1:企业不与保险公司合作,职工不交保险,出意外企业自行拿出与保险公司提供的等额赔偿金赔偿付给意外职工,企业开展这项工作的固定支出为每年12万元;

方案2:企业与保险公司合作,企业负责职工保费的70%,职工个人负责保费的30%,出险后赔偿金由保险公司赔付,企业无额外专项开支.

请根据企业成本差异给出选择合适方案的建议.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设抛物线与抛物线在第一象限的交点为,点AB分别在抛物线上,分别与相切.

1)当点M的纵坐标为4时,求抛物线的方程;

2)若,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(),曲线在点处的切线方程为.

(1)求实数的值,并求的单调区间;

(2)试比较的大小,并说明理由;

(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的极值;

2)若不等式恒成立,求的最小值(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求过点的切线方程;

(2)当时,求函数的最大值;

(3)证明:当时,不等式对任意均成立(其中为自然对数的底数, ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(文科)已知函数.

(1)若,求曲线在点处的切线方程;

(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)设,若有两个零点,求的取值范围.

查看答案和解析>>

同步练习册答案