精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的首项是1,公比为2,等差数列{bn}的首项是1,公差为1,把{bn}中的各项按照如下规则依次插入到{an}的每相邻两项之间,构成新数列{cn}:a1,b1,a2,b2,b3,a3,b4,b5,b6,a4,…,即在an和an+1两项之间依次插入{bn}中n个项,则c2013=
1951
1951
分析:由题意可得,an=2n-1,bn=1+(n-1)×1=n,当n=62时,
63×64
2
=2016即此时共有2016项,且第2016项为262,而c2013=b1951可求
解答:解:由题意可得,an=2n-1,bn=1+(n-1)×1=n
由题意可得,在数列{an}中插入的项为,20,1,21,2,3,22,4,5,6,23…2n时,
共有项为1+2+…+n+(n+1)=
n(1+n)
2
+n+1
=
(n+1)(n+2)
2

当n=62时,
63×64
2
=2016即此时共有2016项,且第2016项为262
∴c2013=b1951=1951
故答案为:1951
点评:本题主要考查了等差数列与等比数列的通项公式的应用,解题的关键是要准确判断所求项在已知数列中所处的项的位置.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案