【题目】对定义域分别为D1 , D2的函数y=f(x),y=g(x),规定:函数h(x)= ,f(x)=x﹣2(x≥1),g(x)=﹣2x+3(x≤2),则h(x)的单调减区间是 .
【答案】(﹣∞,1),[ ,2]
【解析】解:由题意,函数h(x)= , ∵f(x)=x﹣2(x≥1),g(x)=﹣2x+3(x≤2),
∴h(x)的解析式h(x)= ,
当1≤x≤2时,h(x)=(x﹣2)(﹣2x+3)=﹣2x2+7x﹣6,其对称轴为x= ,
故h(x)在[ ,2]上单调递减,
当x<1时,h(x)=﹣2x+3为减函数,故减区间为(﹣∞,1),
综上所述h(x)的单调减区间为(﹣∞,1),[ ,2],
故答案为:(﹣∞,1),[ ,2]
由题中所给的新定义函数,根据其规则结合f(x)=x﹣2(x≥1),g(x)=﹣2x+3(x≤2),直接写出h(x)的解析式即可得到答案.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Acos( + ),x∈R,且f( )= .
(1)求A的值;
(2)设α,β∈[0, ],f(4α+ π)=﹣ ,f(4β﹣ π)= ,求cos(α+β)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列3个命题:
(1)函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
(2)若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0且a>0;
(3)y=x2﹣2|x|﹣3的递增区间为[1,+∞).
其中正确命题的个数是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+2x+c(a、c∈N*)满足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若对任意的实数x∈[ , ],都有f(x)﹣2mx≤1成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x+1),g(x)=loga(4﹣2x),a>0且a≠1.
(1)求函数y=f(x)﹣g(x)的定义域;
(2)求使不等式f(x)>g(x)成立的实数x的取值范围;
(3)求函数y=2f(x)﹣g(x)﹣f(1)的零点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com