精英家教网 > 高中数学 > 题目详情
1.设△ABC的三个内角分别为A,B,C.向量$\overrightarrow{m}$=(1,cos$\frac{C}{2}$)与$\overrightarrow{n}$=($\sqrt{3}$sin$\frac{C}{2}$+cos$\frac{C}{2}$,$\frac{3}{2}$)共线.
(Ⅰ)求角A,B,C的大小;
(Ⅱ)设角A,B,C的对边分别是a,b,c,且满足2acossC+c=2b,试判断△ABC的形状.

分析 (Ⅰ)由向量$\overrightarrow{m}$与$\overrightarrow{n}$共线,可得$\frac{3}{2}$=cos$\frac{C}{2}$($\sqrt{3}$sin$\frac{C}{2}$+cos$\frac{C}{2}$),解得sin(C+$\frac{π}{6}$)=1,结合范围C∈(0,π),可求C的值.
(Ⅱ)由已知a+c=2b 根据余弦定理可得b(b-a)=0,b>0,解得:b=a,$C=\frac{π}{3}$,可得△ABC为等边三角形.

解答 (本题满分为12分)
解:(Ⅰ)∵$\overrightarrow{m}$与$\overrightarrow{n}$共线,
∴$\frac{3}{2}$=cos$\frac{C}{2}$($\sqrt{3}$sin$\frac{C}{2}$+cos$\frac{C}{2}$)=$\frac{\sqrt{3}}{2}$sinC+$\frac{1}{2}$(1+cosC)=sin(C+$\frac{π}{6}$)+$\frac{1}{2}$.(3分)
∴解得:sin(C+$\frac{π}{6}$)=1,
∵C∈(0,π),C+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{7π}{6}$),
∴解得C=$\frac{π}{3}$.   …(6分)
(Ⅱ)由已知a+c=2b 根据余弦定理可得:c2=a2+b2-ab,…(8分)
联立解得:b(b-a)=0,b>0,
解得:b=a,$C=\frac{π}{3}$,
所以△ABC为等边三角形,…(12分)

点评 本题主要考查了平面向量数量积的运算,考查了正弦定理,余弦定理,三角形内角和定理在解三角形中的应用,熟练掌握和灵活应用相关公式定理是解题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知{an}是各项均为正数的等比数列,a1+a2+a3=64($\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$),a${\;}_{{1}_{\;}}$+a2=2($\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$).
(1)求数列{an}的通项公式;
(2)设bn=(an+$\frac{1}{{a}_{n}}$)2,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设向量$\vec a=(1,\;x)$,$\vec b=(x,4)$,则$x=\int_0^{\sqrt{2}}{2tdt}$是$\vec a$∥$\vec b$的(  )条件.
A.充分不必要B.必要不充分
C.充要D.即不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+(4-2a)x+a2+1.
(1)若f(x+2)是偶函数,求a的值;
(2)设P=$\frac{1}{2}$[f(x1)+f(x2)],Q=f($\frac{{x}_{1}+{x}_{2}}{2}$),且x1≠x2,试比较P与Q的大小;
(3)是否存在实数a∈[0,8],使得函数f(x)在[0,4]上的最小值为7,若存在求出a的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过点P(4,2)作圆O:x2+y2=42的弦AB,设弦AB的中点为M,令M的坐标为(x,y),则x和y满足的关系式为(x-2)2+(y-1)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知tanx=2,则$\frac{sin2x+2cos2x}{{2{{cos}^2}x-3sin2x-1}}$的值为$\frac{2}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知矩形ABCD中,$AB=\sqrt{2}$,BC=1,则$\overrightarrow{AC}•\overrightarrow{DB}$=(  )
A.1B.-1C.$\sqrt{6}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)是定义在[-2,2]上的偶函数,当x∈[0,2]时,f(x)=x2+4x+1
(1)用定义证明f(x)在区间[0,2]上是单调递增函数;
(2)解不等式f(x)>f(1-x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设复数z=1+i(i是虚数单位),则复数z+$\frac{1}{z}$的虚部是(  )
A.$\frac{1}{2}$B.$\frac{1}{2}$iC.$\frac{3}{2}$D.$\frac{3}{2}$i

查看答案和解析>>

同步练习册答案