精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)求的单调区间;

2)过点存在几条直线与曲线相切,并说明理由;

3)若对任意恒成立,求实数的取值范围.

【答案】1)增区间为,单调减区间为;(2)三条切线,理由见解析;(3

【解析】

1)对求导,分别令,得到的单调区间;

2)设切点坐标为,利用导数得切线斜率,表示出切线方程,代入过点,得到的方程,解出的值,从而得到结论;

(3)设,分为进行讨论,易得时的情况,当时,易得时成立,时,令,利用导数,得到,从而得到的范围.

1

得,

得,

所以的单调增区间为;单调减区间为

2)过点可做的三条切线;理由如下:

设切点坐标为

所以切线斜率

所以过切点的切线方程为:

切线过点,代入得

化简得

方程有三个解,,即三个切点横坐标,

所以过点可做的三条切线.

3)设

时,因为,所以显然对任意恒成立;

时,若,则不成立,

所以不合题意.

时,时,显然成立,

只需考虑时情况;

转化为对任意恒成立

),

时,单调减;

时,单调增;

所以

所以.

综上所述,的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

得到正确结论是( )

A. 有99%以上的把握认为“学生性别与中学生追星无关”

B. 有99%以上的把握认为“学生性别与中学生追星有关”

C. 在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”

D. 在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,所在平面互相垂直,且分别为的中点.

(1)求证:

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在新高考改革中,打破了文理分科的模式,不少省份采用了等模式.其中模式的操作又更受欢迎,即语数外三门为必考科目,然后在物理和历史中选考一门,最后从剩余的四门中选考两门.某校为了了解学生的选科情况,从高二年级的2000名学生(其中男生1100人,女生900人)中,采用分层抽样的方法从中抽取n名学生进行调查.

1)已知抽取的n名学生中含男生110人,求n的值及抽取到的女生人数;

2)在(1)的情况下对抽取到的n名同学选物理选历史进行问卷调查,得到下列2×2列联表.请将列联表补充完整,并判断是否有99%的把握认为选科目与性别有关?

选物理

选历史

合计

男生

90

女生

30

合计

3)在(2)的条件下,从抽取的选历史的学生中按性别分层抽样再抽取5名,再从这5名学生中抽取2人了解选政治、地理、化学、生物的情况,求2人至少有1名男生的概率.

参考公式:.

0.10

0.010

0.001

2.706

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线E)的左、右焦点分别为,已知点为抛物线C的焦点,且到双曲线E的一条渐近线的距离为,又点P为双曲线E上一点,满足.

1)双曲线的标准方程为______

2的内切圆半径与外接圆半径之比为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且经过点.

1)求椭圆的方程;

2)过点作直线交椭圆两点,若点关于轴的对称点为,证明直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面四边形中,EF中点,,将沿对角线折起至,使平面平面,则四面体中,下列结论不正确的是(

A.平面B.异面直线所成的角为90°

C.异面直线所成的角为60°D.直线与平面所成的角为30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD的底面ABCD是正方形,PA⊥底面ABCDEF分别是ACPB的中点.

1)证明:EF∥平面PCD

2)求证:面PBD⊥面PAC

3)若PA=AB,求PD与平面PAC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校为增加应届毕业生就业机会,每年根据应届毕业生的综合素质和学业成绩对学生进行综合评估,已知某年度参与评估的毕业生共有2000名.其评估成绩近似的服从正态分布.现随机抽取了100名毕业生的评估成绩作为样本,并把样本数据进行了分组,绘制了如下频率分布直方图:

1)求样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);

2)若学校规定评估成绩超过82.7分的毕业生可参加三家公司的面试.

用样本平均数作为的估计值,用样本标准差作为的估计值.请利用估计值判断这2000名毕业生中,能够参加三家公司面试的人数;

附:若随机变量,则

查看答案和解析>>

同步练习册答案