【题目】已知函数
(1)求的单调区间;
(2)过点存在几条直线与曲线相切,并说明理由;
(3)若对任意恒成立,求实数的取值范围.
【答案】(1)增区间为,,单调减区间为;(2)三条切线,理由见解析;(3)
【解析】
(1)对求导,分别令,,得到的单调区间;
(2)设切点坐标为,利用导数得切线斜率,表示出切线方程,代入过点,得到的方程,解出的值,从而得到结论;
(3)设,分为,,进行讨论,易得,时的情况,当时,易得时成立,时,令,利用导数,得到,从而得到的范围.
(1),
得,或;
得,;
所以的单调增区间为,;单调减区间为;
(2)过点可做的三条切线;理由如下:
设切点坐标为,
所以切线斜率
所以过切点的切线方程为:,
切线过点,代入得,
化简得,
方程有三个解,,,,即三个切点横坐标,
所以过点可做的三条切线.
(3)设,
①时,因为,,所以显然对任意恒成立;
②时,若,则不成立,
所以不合题意.
③时,时,显然成立,
只需考虑时情况;
转化为对任意恒成立
令(),
则,
,
当时,,单调减;
当时,,单调增;
所以,
所以.
综上所述,的取值范围.
科目:高中数学 来源: 题型:
【题目】某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
得到正确结论是( )
A. 有99%以上的把握认为“学生性别与中学生追星无关”
B. 有99%以上的把握认为“学生性别与中学生追星有关”
C. 在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”
D. 在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在新高考改革中,打破了文理分科的“”模式,不少省份采用了“”,“”,“”等模式.其中“”模式的操作又更受欢迎,即语数外三门为必考科目,然后在物理和历史中选考一门,最后从剩余的四门中选考两门.某校为了了解学生的选科情况,从高二年级的2000名学生(其中男生1100人,女生900人)中,采用分层抽样的方法从中抽取n名学生进行调查.
(1)已知抽取的n名学生中含男生110人,求n的值及抽取到的女生人数;
(2)在(1)的情况下对抽取到的n名同学“选物理”和“选历史”进行问卷调查,得到下列2×2列联表.请将列联表补充完整,并判断是否有99%的把握认为选科目与性别有关?
选物理 | 选历史 | 合计 | |
男生 | 90 | ||
女生 | 30 | ||
合计 |
(3)在(2)的条件下,从抽取的“选历史”的学生中按性别分层抽样再抽取5名,再从这5名学生中抽取2人了解选政治、地理、化学、生物的情况,求2人至少有1名男生的概率.
参考公式:.
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线E:(,)的左、右焦点分别为,,已知点为抛物线C:的焦点,且到双曲线E的一条渐近线的距离为,又点P为双曲线E上一点,满足.则
(1)双曲线的标准方程为______;
(2)的内切圆半径与外接圆半径之比为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面四边形中,E,F是,中点,,,,将沿对角线折起至,使平面平面,则四面体中,下列结论不正确的是( )
A.平面B.异面直线与所成的角为90°
C.异面直线与所成的角为60°D.直线与平面所成的角为30°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F分别是AC,PB的中点.
(1)证明:EF∥平面PCD;
(2)求证:面PBD⊥面PAC;
(3)若PA=AB,求PD与平面PAC所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校为增加应届毕业生就业机会,每年根据应届毕业生的综合素质和学业成绩对学生进行综合评估,已知某年度参与评估的毕业生共有2000名.其评估成绩近似的服从正态分布.现随机抽取了100名毕业生的评估成绩作为样本,并把样本数据进行了分组,绘制了如下频率分布直方图:
(1)求样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);
(2)若学校规定评估成绩超过82.7分的毕业生可参加三家公司的面试.
用样本平均数作为的估计值,用样本标准差作为的估计值.请利用估计值判断这2000名毕业生中,能够参加三家公司面试的人数;
附:若随机变量,则,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com