精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆E的左右顶点分别为A、B,左右焦点分别为F1、F2 , |AB|=4,|F1F2|=2 ,直线y=kx+m(k>0)交椭圆于C、D两点,与线段F1F2及椭圆短轴分别交于M、N两点(M、N不重合),且|CM|=|DN|.
(Ⅰ)求椭圆E的离心率;
(Ⅱ)若m>0,设直线AD、BC的斜率分别为k1、k2 , 求 的取值范围.

【答案】解:(Ⅰ)由 ,可知 即椭圆方程为

离心率为

(Ⅱ)设D(x1,y1),C(x2,y2)易知

消去y整理得:(1+4k2)x2+8kmx+4m2﹣4=0,

由△>04k2﹣m2+1>0即m2<4k2+1,

且|CM|=|DN|即 可知 ,即 ,解得

由题知,点M、F1的横坐标 ,有

易知 满足m2<2,

,则


【解析】(Ⅰ)由 ,求出a,c,然后求解椭圆的离心率.(Ⅱ)设D(x1,y1),C(x2,y2)通过 ,结合△>0推出m2<4k2+1,利用韦达定理|CM|=|DN|.求出直线的斜率,然后表示出 ,然后求解它的范围即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1所示的平面图形中,ABCD是边长为2的正方形,△HDA和△GDC都是以D为直角顶点的等腰直角三角形,点E是线段GC的中点.现将△HDA和△GDC分别沿着DA,DC翻折,直到点H和G重合为点P.连接PB,得如图2的四棱锥.
(Ⅰ)求证:PA∥平面EBD;
(Ⅱ)求二面角C﹣PB﹣D大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个多面体的直观图、正视图、侧视图、俯视图如图,M,N分别为A1BB1C1的中点.

下列结论中正确的个数有 (  )

①直线MN与A1C相交.

②MN⊥BC.

③MN∥平面ACC1A1.

④三棱锥N-A1BC的体积为=a3.

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l1经过点A(m,1),B(-3,4),直线l2经过点C(1,m),D(-1,m+1),当l1l2l1l2时,分别求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在Rt△AOB中,AO=1,BO=2,如图,动点P是在以O点为圆心,OB为半径的扇形内运动(含边界)且∠BOC=90°;设 ,则x+y的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,PO⊥平面ABC,BO⊥AC,在图中与AC垂直的直线有 (  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数y=f(x)满足f(3)=0,且当x>0时,不等式f(x)>﹣xf′(x)恒成立,则函数g(x)=xf(x)的零点的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形OBCD的顶点O与坐标原点重合,一边在x轴的正半轴上,已知∠BOD=60°,求菱形各边和两条对角线所在直线的倾斜角及斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知随机变量 ξ 的分布列为P(ξ=k)= ( k=1,2,),则 P(2<x≤4)为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案