精英家教网 > 高中数学 > 题目详情

【题目】已知直线2x+y﹣k=0(k>0)与圆x2+y2=4交于不同的两点A,B,O是坐标原点,且有| | | |,那么k的取值范围是( )
A.[ ,+∞)
B.[ ,2
C.[ ,+∞)
D.[ ,2

【答案】B
【解析】解:设AB中点为D,则OD⊥AB,

∵| | | |,∴|2 | | || | | |

又∵OD2+ ,∴OD2≥1.

∵直线2x+y﹣k=0(k>0)与圆x2+y2=4交于不同的两点A、B,

∴OD2<4

,解得

所以答案是:B

【考点精析】本题主要考查了直线与圆的三种位置关系的相关知识点,需要掌握直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f(x+2),且x∈(﹣1,0)时, ,则f(log220)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣f'(0)ex+2x,点P为曲线y=f(x)在点(0,f(0))处的切线l上的一点,点Q在曲线y=ex上,则|PQ|的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax﹣lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)﹣x2 , 是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(3)求证:当x∈(0,e]时,e2x2 x>(x+1)lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2+Dx+Ey+3=0,圆心在直线x+y﹣1=0上,且圆心在第二象限,半径长为 ,求圆的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数y=f(x)的最小正周期;
(2)已知△ABC中,角A,B,C的对边分别是a,b,c,且a,b,c成等比数列,求f(B)的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上的一点A(2,4).
(Ⅰ)是否存在直线l:y=kx+3与圆M有两个交点B,C,并且|AB|=|AC|,若有,求此直线方程,若没有,请说明理由;
(Ⅱ)设点T(t,0)满足:存在圆M上的两点P和Q,使得 = ,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z=bi(b∈R), 是实数,i是虚数单位.
(1)求复数z;
(2)若复数(m+z)2所表示的点在第一象限,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若三棱锥P﹣ABC中,AB=AC=1,AB⊥AC,PA⊥平面ABC,且直线PA与平面PBC所成角的正切值为 ,则三棱锥P﹣ABC的外接球的表面积为( )
A.4π
B.8π
C.16π
D.32π

查看答案和解析>>

同步练习册答案