精英家教网 > 高中数学 > 题目详情
9.在四面体ABCD中,作截面PQR.若PQ,CB的延长线交于点M,RQ,DB的延长线交于点N,RP,DC的延长线交于点K.求证:M,N,K三点共线.

分析 由已知条件推导出M,N,K都在在平面PQR与平面BCD的交线上,由此能证明M,N,K三点共线.

解答 证明:∵M∈PQ,PQ?面PQR,M∈BC,BC?面BCD,
∴M是平面PQR与平面BCD的一个公共点
即M在平面PQR与平面BCD的交线上.
同理可证N,K也在该交线上.
∴M,N,K三点共线.

点评 本题考查三点共线的证明,是基础题,利用两平面交线的唯一性,是证明多点共线的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.如图,函数f(x)的图象是曲线段OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f[$\frac{1}{f(3)}$]的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.sin75°cos105°-sin105°sin15°的值等于-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=x2-2ax+b2的最小值为0,若关于x的不等式f(x)<c的解集为(t,t+4),则实数c的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,根据下列条件解三角形:
(1)c=$\sqrt{6}$,A=45°,a=2:
(2)c=$\sqrt{2}$,A=45°,a=2:
(3)c=3,A=45°,a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的虚半轴长为1,离心率e=$\frac{2\sqrt{3}}{3}$,左、右焦点分别为F1,F2
(1)求双曲线的标准方程;
(2)若过右焦点F2作垂直于x轴的直线1,交双曲线于A、B两点,求|AB|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a<1,b>1,那么下列命题中正确的是(  )
A.$\frac{1}{a}$>$\frac{1}{b}$B.$\frac{b}{a}$>1C.a2<b2D.ab<a+b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\frac{3-m•{3}^{x}}{{3}^{x}}$,且函数g(x)=loga(x2+x+2)(a>0,且a≠1)在[-$\frac{1}{4}$,1]上的最大值为2,若对任意x1∈[-1,2],存在x2∈[0,3],使得f(x1)≥g(x2),则实数m的取值范围是(  )
A.(-∞,-$\frac{2}{3}$]B.(-∞,$\frac{1}{3}$]C.[$\frac{1}{3}$,+∞)D.[-$\frac{1}{3}$,+∞]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设U={1,2,3,4,5},A={1,2},B={2,5},则∁UA∪∁UB={1,3,4,5}.

查看答案和解析>>

同步练习册答案