(本小题满分12分)
如图,在边长为4的菱形中,.点分别在边上,点与点不重合,,.沿将翻折到的位置,使平面⊥平面.
(1)求证:⊥平面;
(2)当取得最小值时,请解答以下问题:
(i)求四棱锥的体积;
(ii)若点满足= (),试探究:直线与平面所成角的大小是否一定大于?并说明理由.
(1)∵ 菱形的对角线互相垂直,∴,平面,∴ ,∵,∴平面(2)(i)3 (ii) 一定大于,用向量可以求出
【解析】
试题分析:(1)证明:∵ 菱形的对角线互相垂直,
∴,∴, ……1分
∵ ,∴.
∵ 平面⊥平面,平面平面,且平面,
∴ 平面,
∵ 平面,∴ . ……3分
∵ ,∴ 平面. ……4分
(2)如图,以为原点,建立空间直角坐标系. ……5分
(ⅰ)设 因为,所以为等边三角形,
故,.又设,则,.
所以,,,
故 , ……6分
所以,
当时,. 此时, ……7分
由(1)知,平面
所以. ……8分
(ⅱ)设点的坐标为,
由(i)知,,则,,,.
所以,, ……9分
∵,
∴.
∴,
∴. ……10分
设平面的法向量为,则.
∵,,∴ ,
取,解得:, 所以. ……11分
设直线与平面所成的角,
∴
. ……12分
又∵∴. ……13分
∵,∴.
因此直线与平面所成的角大于,即结论成立. ……14分
考点:本小题主要考查线面垂直的证明和用空间向量解决立体几何问题,考查学生的空间想象能力和运算求解能力.
点评:用传统的方法证明立体几何问题时要紧扣定理,定理中要求的条件缺一不可;用空间向量解决立体几何问题时问题变得简单,但是运算量比较大,要仔细运算,以防出错.
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com