精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

如图,在边长为4的菱形中,.点分别在边上,点与点不重合,.沿翻折到的位置,使平面⊥平面

(1)求证:⊥平面

(2)当取得最小值时,请解答以下问题:

(i)求四棱锥的体积;

(ii)若点满足= (),试探究:直线与平面所成角的大小是否一定大于?并说明理由.

 

【答案】

(1)∵ 菱形的对角线互相垂直,∴平面,∴ ,∵,∴平面(2)(i)3 (ii) 一定大于,用向量可以求出

【解析】

试题分析:(1)证明:∵ 菱形的对角线互相垂直,

,∴,                                               ……1分

∵ ,∴.                          

∵ 平面⊥平面,平面平面,且平面

∴ 平面,

∵ 平面,∴ .                                    ……3分

∵ ,∴ 平面.                                  ……4分

(2)如图,以为原点,建立空间直角坐标系.                    ……5分

(ⅰ)设 因为,所以为等边三角形,

.又设,则.

所以

,                                      ……6分

所以

时,. 此时                      ……7分

由(1)知,平面

所以.             ……8分

(ⅱ)设点的坐标为

由(i)知,,则.

所以,                            ……9分

, 

.                                               ……10分

设平面的法向量为,则

,∴ ,

,解得:, 所以.                            ……11分

设直线与平面所成的角

.                                    ……12分

又∵.                                              ……13分

,∴

因此直线与平面所成的角大于,即结论成立.                 ……14分

考点:本小题主要考查线面垂直的证明和用空间向量解决立体几何问题,考查学生的空间想象能力和运算求解能力.

点评:用传统的方法证明立体几何问题时要紧扣定理,定理中要求的条件缺一不可;用空间向量解决立体几何问题时问题变得简单,但是运算量比较大,要仔细运算,以防出错.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案