精英家教网 > 高中数学 > 题目详情
三棱柱ABC-A1B1C1底面是等边三角形,顶点A1在底面的射影为点B,且△ABA1是一个等腰直角三角形,则异面直线AB与B1C所成的角大小为(  )
A、
π
4
B、arccos
3
4
C、arccos
2
5
5
D、
π
3
分析:建立坐标系,写出各点的坐标,求出
AB
, 
B1C
的坐标,利用向量的数量积公式求出
AB
B1C
的夹角余弦,取其绝对值即为异面直线AB与B1C所成的角的余弦.
解答:解:取AC的中点D,以BD为x轴,以BA1为z轴,过B平行于AC的直线为y轴建立坐标系,设底面的边长为1,则侧棱长为
2

A(
3
2
,-
1
2
,0
),B(0,0,0),C(
3
2
1
2
,0
),B1(-
3
2
1
2
,1)

AB
=(-
3
2
1
2
,0)
B1C
=(
3
,0,-1)

AB
B1C
=-
3
2

|
AB
|=1,|
B1C
|=2

cos<
AB
B1C
>=
AB
B1C
|
AB
|=1|
B1C
|
=-
3
4

设异面直线AB与B1C所成的角为θ
cosθ=
3
4

θ=arccos
3
4

故选B
点评:解决立体几何中的点、线、面的位置关系及度量关系常借助的工具是空间向量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在三棱柱ABC-A1B1C1中,侧面AA1B1B是边长为2的正方形,点C在平面AA1B1B上的射影H恰好为A1B的中点,且CH=
3
,设D为CC1中点,
(Ⅰ)求证:CC1⊥平面A1B1D;
(Ⅱ)求DH与平面AA1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网
如图(1)是一个水平放置的正三棱柱ABC-A1B1C1,D是棱BC的中点.正三棱柱的主视图如图(2).
(Ⅰ) 图(1)中垂直于平面BCC1B1的平面有哪几个?(直接写出符合要求的平面即可,不必说明或证明)
(Ⅱ)求正三棱柱ABC-A1B1C1的体积;
(Ⅲ)证明:A1B∥平面ADC1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=
6
,M是棱CC1的中点,
(1)求证:A1B⊥AM;
(2)求直线AM与平面AA1B1B所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:在直三棱柱ABC-A1B1C1中,已知AB=A1A,AC=BC,点D、E分别为C1C、AB的中点,O为A1B与AB1的交点.
(Ⅰ)求证:EC∥平面A1BD;
(Ⅱ)求证:AB1⊥平面A1BD.

查看答案和解析>>

科目:高中数学 来源:湖北省部分重点中学2010届高三第一次联考 题型:解答题

 

        如图所示,在正三棱柱ABC—A11C1中,BB1=BC=2,且M是BC的中点,点N在CC1上。

 
   (1)试确定点N的位置,使AB1⊥MN;

   (2)当AB1⊥MN时,求二面角M—AB1—N的大小。

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案