精英家教网 > 高中数学 > 题目详情

已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=.

(Ⅰ)求点S的坐标;

(Ⅱ)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;

①判断直线MN的斜率是否为定值,并说明理由;

②延长NM交轴于点E,若|EM|=|NE|,求cos∠MSN的值.

 

【答案】

(Ⅰ);(Ⅱ)①详见解析,②

【解析】

试题分析:(1)由抛物线定义等于点到准线的距离,可求点的横坐标,代入抛物线方程求点的纵坐标;(2)由已知直线斜率互为相反数,可设其中一条斜率为,写出直线方程并与抛物线联立之得关于的二次方程(其中有一根为1),或的一元二次方程(其中有一根为1),再利用韦达定理并结合直线方程,求出点的坐标,然后用代替得点的坐标,代入斜率公式看是否定值即可;(3)依题意,利用向量式得三点坐标间的关系,从而求,进而可求直线的方程,再确定两点坐标,在中利用余弦定理求.

试题解析:(1)设(>0),由已知得F,则|SF|=,∴=1,∴点S的坐标是(1,1);

(2)①设直线SA的方程为

,∴.

由已知SA=SB,∴直线SB的斜率为,∴ ∴

②设E(t,0),∵|EM|=|NE|,∴

 ,则 ∴直线SA的方程为,则,同理 ,∴

考点:1、抛物线定义;2、韦达定理;3、余弦定理.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知点F是抛物线C:y2=x的焦点,S是抛物线C在第一象限内的点,且|SF|=
5
4

(Ⅰ)求点S的坐标;
(Ⅱ)以S为圆心的动圆与x轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;
①判断直线MN的斜率是否为定值,并说明理由;
②延长NM交x轴于点E,若|EM|=
1
3
|NE|,求cos∠MSN的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F是抛物线C:y2=4x的焦点,过点F且斜率为
3
的直线交抛物线C于A、B两点,设|FA|>|FB|,则
|FA|
|FB|
的值等于(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省高三第三次模拟考试理科数学试卷(解析版) 题型:解答题

(本小题满分12分)已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=

(Ⅰ)求点S的坐标;

(Ⅱ)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;

①判断直线MN的斜率是否为定值,并说明理由;

②延长NM交轴于点E,若|EM|=|NE|,求cos∠MSN的值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省高三2月月考数学理卷 题型:解答题

(本小题满分12分)

已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=

(1)求点S的坐标;

(2)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;

     ①判断直线MN的斜率是否为定值,并说明理由;

     ②延长NM交轴于点E,若|EM|=|NE|,求cos∠MSN的值。

 

 

查看答案和解析>>

同步练习册答案