精英家教网 > 高中数学 > 题目详情
16.求证:$\frac{1-2sinxcosx}{co{s}^{2}x-si{n}^{2}x}$=$\frac{1-tanx}{1+tanx}$,并证明.

分析 利用同角三角函数基本关系式化简左边等于右边即可得证.

解答 证明:左边=$\frac{si{n}^{2}x+co{s}^{2}x-2sinxcosx}{(cosx+sinx)(cosx-sinx)}$=$\frac{(cosx-sinx)^{2}}{(cosx+sinx)(cosx-sinx)}$=$\frac{cosx-sinx}{cosx+sinx}$=$\frac{1-tanx}{1+tanx}$=右边.
得证.

点评 本题主要考查了同角三角函数基本关系式在三角函数证明中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.定义在R上的奇函数f(x)满足在(-∞,0)上为增函数且f(-1)=0,则不等式x•f(x)>0的解集为(  )
A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a<b,d<c,并且(c-a)(c-b)<0,(d-a)(d-b)>0,则a、b、c、d的大小关系是(  )
A.d<a<c<bB.a<c<b<dC.a<d<b<cD.a<d<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,空间四边形OABC中,点M、N分别OA、BC上,OM=2MA、BN=CN,则$\overrightarrow{MN}$=(  )
A.$\frac{1}{2}\overrightarrow{OA}-\frac{2}{3}\overrightarrow{OB}+\frac{1}{2}\overrightarrow{OC}$B.$-\frac{2}{3}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+\frac{1}{2}\overrightarrow{OC}$C.$\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}-\frac{1}{2}\overrightarrow{OC}$D.$\frac{2}{3}\overrightarrow{OA}+\frac{2}{3}\overrightarrow{OB}-\frac{1}{2}\overrightarrow{OC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若方程x2+(m-3)x+m=0,m∈R,在x∈R上有两个不相等的实数根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设双曲线C的中心为点O,若有且只有一对相交于点O、所成的角为60°的直线A1B1和A${2}_{\;}^{\;}$B2,使|A1B1|=|A${2}_{\;}^{\;}$B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是$(\frac{{2\sqrt{3}}}{3},2]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l1:x-y+5=0和l2:x+4=0,抛物线C:y2=16x,P是C上一动点,则P到l1与l2距离之和的最小值为$\frac{{9\sqrt{2}}}{2}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知两定点F1(-4,0),F2(4,0),点P是平面上一动点,且|PF1|+|PF2|=9,则点P的轨迹是(  )
A.B.直线C.椭圆D.线段

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(x2+$\frac{3}{2}$)(x+a)(a∈R).
(Ⅰ)若函数f(x)的图象上有与x轴平行的切线,求a的范围;
(Ⅱ)若f′(-1)=0.证明:对任意的x1,x2∈,不等式|f(x1)-f(x2)|≤$\frac{5}{16}$恒成立.

查看答案和解析>>

同步练习册答案