精英家教网 > 高中数学 > 题目详情

【题目】已知曲线 =1与直线y=2x+m有两个交点,则m的取值范围是(
A.(﹣∞,﹣4)∪(4,+∞)
B.(﹣4,4)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣3,3)

【答案】A
【解析】解:作出曲线 =1对应的图象如图所示:

由图象可知直线y=2x+m
经过点A(﹣2,0)时,直线和曲线有一个交点,
此时﹣4+m=0,即m=4,此时要使两曲线有两个交点,则m>4,
直线y=2x+m经过点B(2,0)时,直线和曲线有一个交点,
当直线经过点B时,4+m=0,即m=﹣4,
此时要使两曲线有两个交点,则m<﹣4,
综上,m的取值范围是m>4或m<﹣4.
故选:A.
【考点精析】认真审题,首先需要了解截距式方程(直线的截距式方程:已知直线轴的交点为A,与轴的交点为B,其中).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】计算求值.
(1)已知cosα= ,α为锐角,求tan2α的值;
(2)已知sin(θ+ )= ,θ为钝角,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有标号为1,2,3,4的4张标签,随机地选取两张标签,根据下列条件求两张标签上的数字为相邻整数的概率:
(1)标签的选取是无放回的;
(2)标签的选取是有放回的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的公比q≠1,则下面说法中不正确的是(
A.{an+2+an}是等比数列
B.对于k∈N* , k>1,ak1+ak+1≠2ak
C.对于n∈N* , 都有anan+2>0
D.若a2>a1 , 则对于任意n∈N* , 都有an+1>an

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直四棱柱ABCD﹣A1B1C1D1中,底面ABCD为正方形,AA1=2AB,E为AA1的中点,则异面直线BE与CD1所成角的余弦值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足a1+3a2+32a3+…+3n1an= ,n∈N*
(1)求数列{an}的通项;
(2)设 ,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积(m2).

(1)求关于的函数关系式;

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(x1 , f(x1),B(x2 , f(x2))是函数f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)图象上的任意两点,且初相φ的终边经过点P(1,﹣ ),若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为
(1)求函数f(x)的解析式;
(2)当x∈[0, ]时,求函数f(x)的单调递增区间;
(3)当x∈[0, ]时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(lnx﹣ax)有两个极值点,则实数a的取值范围是(
A.(﹣∞,0)
B.(0,
C.(0,1)
D.(0,+∞)

查看答案和解析>>

同步练习册答案