精英家教网 > 高中数学 > 题目详情
已知是定义在上的偶函数,上为增函数,且,则不等式的解集为     .

试题分析:因为是定义在上的偶函数,所以的图象关于y轴对称,而上为增函数,且,所以上为减函数,且,根据图象可知,要使,需要,或,解得不等式的解集为.
点评:函数的单调性和奇偶性是函数的两个比较重要的性质,经常结合在一起出题,要灵活应用它
们的性质.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(满分14分) 定义在上的函数同时满足以下条件:
上是减函数,在上是增函数;②是偶函数;
处的切线与直线垂直.
(1)求函数的解析式;
(2)设,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义域为[0,1]的函数同时满足以下三个条件:①对任意,总有;②;③若,则有成立.
(1) 求的值;(2) 函数在区间[0,1]上是否同时适合①②③?并予以证明
(3) 假定存在,使得,且,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是定义在上的奇函数,且当,设,给出三个条件:①,③.其中可以推出的条件共有          个.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

建造一条防洪堤,其断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为平方米,为了使堤的上面与两侧面的水泥用料最省,则断面的外周长(梯形的上底线段与两腰长的和)要最小.

(1)求外周长的最小值,并求外周长最小时防洪堤高h为多少米?
(2)如防洪堤的高限制在的范围内,外周长最小为多少米?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数上为增函数,则实数的取值范围为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
是实数,
(1)若函数为奇函数,求的值;
(2)试用定义证明:对于任意上为单调递增函数;
(3)若函数为奇函数,且不等式对任意 恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

当函数(>0)取最小值时相应的的值等于     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数中,常数那么的解集为
A.B.C.D.

查看答案和解析>>

同步练习册答案