精英家教网 > 高中数学 > 题目详情
已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=
g(x)
x

(1)求a、b的值;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求实数k的取值范围;
(3)若f(|2k-1|)+k•
2
|2k-1|
-3k=0有三个不同的实数解,求实数k的取值范围.
考点:函数恒成立问题,函数的零点与方程根的关系
专题:函数的性质及应用
分析:(1)由函数g(x)=a(x-1)2+1+b-a,a>0,所以g(x)在区间[2,3]上是增函数,故
g(2)=1
g(3)=4
,由此解得a、b的值.
(2)不等式可化为 2x+
1
2x
-2≥k•2x,故有 k≤t2-2t+1,t∈[
1
2
,2],求出h(t)=t2-2t+1的最大值,从而求得k的取值范围.
(3)方程f(|2k-1|)+k•
2
|2k-1|
-3k=0⇒|2x-1|2-(2+3k)|2x-1|+(1+2k)=0,(|2x-1|≠0),令|2x-1|=t,则t2-(2+3k)t+(1+2k)=0(t≠0),构造函数h(t)=t2-(2+3k)t+(1+2k),通过数形结合与等价转化的思想即可求得k的范围.
解答: 解:(1)函数g(x)=ax2-2ax+b+1=a(x-1)2+1+b-a,
因为a>0,所以g(x)在区间[2,3]上是增函数,
g(2)=1
g(3)=4

b+1=1
3a+b+1=4

解得
a=1
b=0

(2)由已知可得f(x)=x+
1
x
-2,
所以,不等式f(2x)-k•2x≥0可化为 2x+
1
2x
-2≥k•2x
可化为 1+(
1
2x
2-2•
1
2x
≥k,令t=
1
2x
,则 k≤t2-2t+1.
因 x∈[-1,1],故 t∈[
1
2
,2].故k≤t2-2t+1在t∈[
1
2
,2]上能成立.
记h(t)=t2-2t+1,因为 t∈[
1
2
,2],故 h(t)max=h(2)=1,
所以k的取值范围是(-∞,1]. 
(3)方程f(|2k-1|)+k•
2
|2k-1|
-3k=0可化为:
|2x-1|2-(2+3k)|2x-1|+(1+2k)=0,|2x-1|≠0,
令|2x-1|=t,则方程化为
t2-(2+3k)t+(1+2k)=0(t≠0),
∵方程f(|2k-1|)+k•
2
|2k-1|
-3k=0有三个不同的实数解,
∴由t=|2x-1|的图象知,

t2-(2+3k)t+(1+2k)=0(t≠0),有两个根t1、t2
且0<t1<1<t2或0<t1<1,t2=1.
记h(t)=t2-(2+3k)t+(1+2k),
h(0)=1+2k>0
h(1)=-k<0
,或
h(0)=1+2k>0
h(1)=-k=0
0<
2+3k
2
<1

∴k>0.
点评:本题考查二次函数在闭区间上的最值,考查函数恒成立问题问题,考查数形结合与等价转化、函数与方程思想的综合应用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在复平面内,复数z=
1+i
3-4i
的共轭复数
.
z
对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

在直三棱柱ABC-A1B1C1中,AB1⊥BC1,CA1⊥BC1.求证:AB1=CA1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2=9上一定点A(3,0),P为圆上的动点,求线段AP中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex,g(x)=mx+n.
(1)设h(x)=f(x)-g(x).
①若函数h(x)在x=0处的切线过点(1,0),求m+n的值;
②当n=0时,若函数h(x)在(-1,+∞)上没有零点,求m的取值范围;
(2)设函数r(x)=
1
f(x)
+
nx
g(x)
,且n=4m(m>0),求证:当x≥0时,r(x)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以O为极点,X轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρcos(θ-
π
3
)=
a-b
2
,与曲线C:ρ=
2
交于A,B两点,已知|AB|≥
6

(1)求直线l与曲线C的直角坐标方程;
(2)若动点P(a,b)在曲线C围成的区域内运动,求点P所表示的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆
x2
4
+
y2
3
=1的两个焦点,P是椭圆上一点且∠F1PF2=30°,则△PF1F2的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥P-ABC中PA⊥AB,PA⊥AC,∠BAC=120°,PA=AB=AC=2,
(1)求该三棱锥的外接球体积;
(2)求内切球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
x-2
bx+2
(a>0且a≠1)为奇函数.
(1)求b的值;
(2)判断f(x)在(2,+∞)上的单调性;
(3)若f(x)=loga
x-2
bx+2
(0<a<1)的定义域为[m,n],值域为[logaa(n-1),logaa(m-1)].
①求a的取值范围;
②求证:n>4.

查看答案和解析>>

同步练习册答案