精英家教网 > 高中数学 > 题目详情

【题目】已知:函数

(1)当时,求函数的极值;

(2)若函数,讨论的单调性;

(3)若函数的图象与轴交于两点,且.设,其中常数满足条件,且.试判断在点处的切线斜率的正负,并说明理由.

【答案】(1)极小值1,无极大值(2) 时, 上单调减;当 上单调减,在上单调增(3)在点处的切线斜率为正.

【解析】试题分析:(1)求导,利用导函数的符号变化得到函数的单调性,进而得到函数的极值;(2)求导,讨论二次项系数的符号、判别式的符号及两根大小进行求解;(3)先将问题转化为判断的符号,合理构造函数进行证明.

试题解析:(1)当 列表得

1

0

单调减

极小值

单调增

有极小值无极大值

2

恒成立恒成立 上单调减

恒成立且不恒为0,则恒成立且不恒为0上单调减

有两个实数根

上单调减,在上单调增.

综上:当时, 上单调减;当 上单调减,在上单调增.

3 ,问题即为判断的符号.

函数的图象与轴交于两点

两式相减得:

)

研究 的符号即判断的符号.

方法(一)设,其对称轴为:

上单调减,则,即上恒成立 上单调增 ,即

,即

在点处的切线斜率为正.

方法(二)

上恒成立

上单调增 ,即

,即

在点处的切线斜率为正.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】先后抛掷两枚质地均匀的骰子各一次,设出现的点数之和是12,11,10的概率依次是,则( )

A. =< B. <<

C. <= D. =<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且cos2 = ,△ABC的面积为4.
(1)求 的值;
(2)若2sinB=5sinC,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2013年1月,北京经历了59年来雾霾天气最多的一个月.据气象局统计,北京市2013年1月1日至1月30日这30天里有26天出现雾霾天气,《环境空气质量指数(AQI)技术规定(试行)》如表1:

表1 空气质量指数AQI分组表

AQI指数M

0~50

51~100

101~150

151~200

201~300

>300

级别

状况

轻度污染

中度污染

重度污染

严重污染

表2是某气象观测点记录的连续4天里AQI指数M与当天的空气水平可见度y(km)的情况,表3是某气象观测点记录的北京市2013年1月1日至1月30日的AQI指数频数分布表.

表2 AQI指数M与当天的空气水平可见度y(km)的情况

AQI指数M

900

700

300

100

空气水平可见度y(km)

0.5

3.5

6.5

9.5

表3 北京市2013年1月1日至1月30日AQI指数频数分布表

AQI指数M

[0,200)

[200,400)

[400,600)

[600,800)

[800,1000]

频数

3

6

12

6

3

(1)设x=,根据表2的数据,求出y关于x的线性回归方程.

(2)小王在北京开了一家洗车店,经小王统计:当AQI指数低于200时,洗车店平均每天亏损约2000元;当AQI指数在200至400时,洗车店平均每天收入约4000元;当AQI指数不低于400时,洗车店平均每天收入约7000元.

①估计小王的洗车店在2013年1月份平均每天的收入;

②从AQI指数在[0,200)和[800,1000]内的这6天中抽取2天,求这2天的收入之和不低于5000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列4个命题,其中正确命题的个数是(
①计算:9192除以100的余数是1;
②命题“x>0,x﹣lnx>0”的否定是“x>0,x﹣lnx≤0”;
③y=tanax(a>0)在其定义域内是单调函数而且又是奇函数;
④命题p:“|a|+|b|≤1”是命题q:“对任意的x∈R,不等式asinx+bcosx≤1恒成立”的充分不必要条件.
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,对称轴是轴,且过点.

(Ⅰ)求抛物线的方程;

(Ⅱ)已知斜率为的直线轴于点,且与曲线相切于点,点在曲线上,且直线轴, 关于点的对称点为,判断点是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,数列的前项和为

(1)求的值;

(2)若

①求证:数列为等差数列;

②求满足的所有数对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的右焦点为 是双曲线C上的点, ,连接并延长交双曲线C与点P,连接,若是以为顶点的等腰直角三角形,则双曲线C的渐近线方程为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,满足.

1)求函数的解析式;

2)若关于的不等式上有解,求实数的取值范围;

3)若函数的两个零点分别在区间内,求实数的取值范围.

查看答案和解析>>

同步练习册答案