精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若曲线在点处的切线方程为,求

2)当时,,求实数的取值范围.

【答案】1;(2

【解析】

(1)对函数求导,运用可求得的值,再由在直线上,可求得的值;

(2)由已知可得恒成立,构造函数,对函数求导,讨论0的大小关系,结合单调性求出最大值即可求得的范围.

1)由题得

因为在点相切

所以,∴

2)由,令,只需

,设),

时,时为增函数,所以,舍;

时,开口向上,对称轴为,所以时为增函数,

所以,舍;

时,二次函数开口向下,且

所以时有一个零点,在,在

①当时,小于零,

所以时为减函数,所以,符合题意;

②当时,大于零,

所以时为增函数,所以,舍.

综上所述:实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是直线上的动点,过点的直线与抛物线相切,切点分别是.

1)证明:直线过定点;

2)以为直径的圆过点,求点的坐标及圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.

(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;

(Ⅱ)设直线与曲线C交于P,Q两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.

(1)的长;

(2)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,是等边三角形,点在棱上,平面平面

1)求证:平面平面

2)若,求直线与平面所成角的正弦值的最大值;

3)设直线与平面相交于点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的图象如图所示,令,则下列关于函数的说法中正确的是(

A. 函数图象的对称轴方程为

B. 函数的最大值为2

C. 函数的图象上存在点,使得在点处的切线与直线平行

D. 若函数的两个不同零点分别为,则最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是国家统计局于202019日发布的201812月到201912月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;环比是指本期与上期作对比.如:20192月与20182月相比较称同比,20192月与20191月相比较称环比)根据该折线图,下列结论错误的是(

A.201912月份,全国居民消费价格环比持平

B.201812月至201912月全国居民消费价格环比均上涨

C.201812月至201912月全国居民消费价格同比均上涨

D.201811月的全国居民消费价格高于201712月的全国居民消费价格

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为,t为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求直角坐标系下直线与曲线的普通方程;

2)设直线与曲线交于点(二者可重合),交轴于,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知平面直角坐标系,以为极点, 轴的非负半轴为极轴建立极坐标系, 点的极坐标为,曲线的参数方程为为参数).

(1)写出点的直角坐标及曲线的直角坐标方程;

(2)若为曲线上的动点,求的中点到直线 的距离的最小值.

查看答案和解析>>

同步练习册答案