精英家教网 > 高中数学 > 题目详情
一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.
假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.
(1)(2)506.25
(1)设第一次取出的4件产品中恰有3件优质品为事件A,
第一次取出的4件产品中全为优质品为事件B,
第二次取出的4件产品都是优质品为事件C,
第二次取出的1件产品是优质品为事件D,
这批产品通过检验为事件E,
∴P(E)=P(A)P(B|A)+P(C)P(D|C)=.
(2)X的可能取值为400,500,800,并且
P(X=400)=1-,P(X=500)=,P(X=800)=
∴X的分布列为
X
400
500
800
P



EX=400×+500×+800×=506.25.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人5次测试的成绩(单位:分)记录如下:
甲  86   77   92   72   78
乙  78   82   88   82   95
(1)用茎叶图表示这两组数据;.
(2)现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);
(3)若将频率视为概率,对运动员甲在今后三次测试成绩进行预测,记这三次成绩高于分的次数为,求的分布列和数学期望..

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某高校在202年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85), 第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.

(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,
(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙同时进入第二轮面试的概率;
(ⅱ)学校决定在这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有名学生被考官D面试,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个口袋中有4个白球,2个黑球,每次从袋中取出一个球.
(1)若有放回的取2次球,求第二次取出的是黑球的概率;
(2)若不放回的取2次球,求在第一次取出白球的条件下,第二次取出的是黑球的概率;
(3)若有放回的取3次球,求取出黑球次数X的分布列及E(X).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回.
(1)设第一次训练时取到的新球个数为ξ,求ξ的分布列和数学期望;
(2)求第二次训练时恰好取到一个新球的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

袋中有3个黑球,1个红球.从中任取2个,取到一个黑球得0分,取到一个红球得2分,则所得分数ξ的数学期望E(ξ)=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体.经过搅拌后,从中随机取出一个小正方体,记它的涂油漆面数为X,则X的均值为E(X)=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一高考考生咨询中心有A、B、C三条咨询热线.已知某一时刻热线A、B占线的概率均为0.5,热线C占线的概率为0.4,各热线是否占线相互之间没有影响,假设该时刻有ξ条热线占线,则随机变量ξ的期望为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算).有人独立来该租车点则车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时.
(1)求出甲、乙所付租车费用相同的概率;
(2)求甲、乙两人所付的租车费用之和为随机变量X,求X的分布列与数学期望E(X).

查看答案和解析>>

同步练习册答案