精英家教网 > 高中数学 > 题目详情

【题目】已知圆,圆与圆关于直线对称.

1)求圆的方程;

2)过直线上的点分别作斜率为4的两条直线,求使得被圆截得的弦长与被圆截得的弦长相等时点的坐标.

【答案】(1) (2)

【解析】

1)设,先由圆与圆关于直线对称,求出,进而可求出结果;

2)先设,得到的方程为的方程为,根据弦长相等,结合点到直线距离公式,得到,求解,再根据直线与圆的位置关系,即可得出结果.

1)设,因为圆与圆关于直线对称,

则直线与直线垂直,中点在直线上,得

解得,所以圆.

2)设的方程为,即

的方程为,即.

因为被圆截得的弦长与被圆截得的弦长相等,且两圆半径相等,

所以的距离与的距离相等,即

所以.

由题意,到直线的距离

所以不满足题意,舍去,

,点坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:

(2)讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点,斜率为1的直线与抛物线交于点,且.

(1)求抛物线的方程;

(2)过点作直线交抛物线于不同于的两点,若直线分别交直线两点,求取最小值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为椭圆的左顶点,过的直线交抛物线两点,的中点.

1)求证:点的横坐标是定值,并求出该定值;

2)若直线点,且倾斜角和直线的倾斜角互补,交椭圆于两点,求的值,使得的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中心在原点,对称轴为坐标轴的双曲线与圆有公共点,且圆在点处的切线与双曲线的一条渐近线平行,则该双曲线的实轴长为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】唐代诗人李欣的是古从军行开头两句说百日登山望烽火,黄昏饮马傍交河诗中隐含着一个有缺的数学故事将军饮马的问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为,若将军从出发,河岸线所在直线方程,并假定将军只要到达军营所在区域即回到军营,则将军饮马的最短总路程为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三家企业产品的成本分别为100001200015000,其成本构成如下图所示,则关于这三家企业下列说法错误的是(

A.成本最大的企业是丙企业B.费用支出最高的企业是丙企业

C.支付工资最少的企业是乙企业D.材料成本最高的企业是丙企业

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个三角形数表按如下方式构成(如图:其中项数):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:为数表中第行的第个数.

……

(1)求第2行和第3行的通项公式

(2)证明:数表中除最后2行外每一行的数都依次成等差数列,并求关于的表达式;

(3)若,试求一个等比数列,使得,且对于任意的,均存在实数,当时,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确命题的序号是(    )

①函数fx)在定义域R内可导,f1)=0”函数fx)在x1处取极值的充分不必要条件;

②函数fx)=x3ax[12]上单调递增,则a4

③在一次射箭比赛中,甲、乙两名射箭手各射箭一次.设命题p甲射中十环,命题q乙射中十环,则命题至少有一名射箭手没有射中十环可表示为(¬p)∨(¬q);

④若椭圆左、右焦点分别为F1F2,垂直于x轴的直线交椭圆于AB两点,当直线过右焦点时,ABF1的周长取最大值

A.①③④B.②③④C.②③D.①④

查看答案和解析>>

同步练习册答案