精英家教网 > 高中数学 > 题目详情
9.已知f(x)=x2+4x+1,
(1)求f(2x-1)的解析式;
(2)当x=4时,求f(x)的值.

分析 (1)利用代入法进行求解即可.
(2)令x=4,代入即可.

解答 解:(1)∵f(x)=x2+4x+1,
∴f(2x-1)=(2x-1)2+4(2x-1)+1=4x2+4x-3.
(2)当x=4时,f(4)=42+4×4+1=16+16+1=33.

点评 本题主要考查函数解析式的求解以及函数值的计算,利用代入法是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设函数g(x)=1+x且当x≠0时,f(g(x))=$\frac{1-x}{x}$,则f($\frac{1}{2}$)=(  )
A.0B.1C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知an=cos$\frac{2nπ}{3}$,Sn是数列{an}的前n项和,则S2015=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}中,Sn=2n,an=$\left\{\begin{array}{l}{2,}&{n=1}\\{{2}^{n-1},}&{n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知10a=3,b=lg5,求103a-2b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知sinα-3cosα=0,求$\frac{1}{3}$sin2α+4cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求函数y=-2cos(2x+$\frac{π}{3}$)+1的最大值与最小值,并分别求出取得最大值和最小值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知定点M(-1,2),动点N在单位圆x2+y2=1上运动.以0M,0N为邻边作平行四边形OMPN,则点P到直线3x+4y+10=0距离的取值范围是[2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=ex+x-2的零点为x1,函数g(x)=lnx+x2-3的零点为x2,则(  )
A.g(x1)<0,f(x2)>0B.g(x1)>0,f(x2)<0C.g(x1)>0,f(x2)>0D.g(x1)<0,f(x2)<0

查看答案和解析>>

同步练习册答案