精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程是为参数,),在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程是,等边的顶点都在上,且点按照逆时针方向排列,点的极坐标为.

(Ⅰ)求点的直角坐标;

(Ⅱ)设上任意一点,求点到直线的距离的取值范围.

【答案】(Ⅰ)点的直角坐标为点的直角坐标为点的直角坐标为.

(Ⅱ)

【解析】

(Ⅰ)由点的极坐标和的排列顺序,得到点和点的极坐标,再由求出的直角坐标即可;

(Ⅱ)由点和点的坐标可得直线的方程,设点,由点到直线距离公式表示出点到直线的距离,再由辅助角公式和三角函数的性质得到的取值范围即可.

(Ⅰ)由题意,等边的顶点都在上,

且点按照逆时针方向排列,点的极坐标为

所以点的极坐标,点的极坐标

可得点的直角坐标为

点的直角坐标为

点的直角坐标为.

(Ⅱ)由(Ⅰ)知,

所以得的直线方程为:

设点

则点到直线的距离

因为,所以

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)定义:对于函数,若存在,使成立,则称为函数的不动点.如果函数存在不动点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】疫情爆发以来,相关疫苗企业发挥专业优势与技术优势争分夺秒开展疫苗研发.为测试疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),选定2000个样本分成三组,测试结果如下表:

疫苗有效

673

疫苗无效

77

90

已知在全体样本中随机抽取1个,抽到组疫苗有效的概率是0.33.

1)求的值;

2)现用分层抽样的方法在全体样本中抽取360个测试结果,求组应抽取多少个?

3)已知,求疫苗能通过测试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过其右焦点与长轴垂直的直线与椭圆在第一象限交于点,且.

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆的左、右顶点分别为,点是椭圆上的动点,且点与点不重合,直线与直线分别交于点,求证:以线段为直径的圆过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在几何体中,,直角梯形中,,且,且.

1)求证:平面平面

2)若直线与平面所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是方程的两个不等实数根,记.下列两个命题(

①数列的任意一项都是正整数;

②数列存在某一项是5的倍数.

A.①正确,②错误B.①错误,②正确

C.①②都正确D.①②都错误

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中提到了一种名为刍甍[chúméng]”的五面体(如图),四边形为矩形,棱.若此几何体中,都是边长为的等边三角形,则此几何体的体积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下命题:

1)已知回归直线方程为,样本点的中心为,则

2)已知的夹角为钝角,则的充要条件;

3)函数图象关于点对称且在上单调递增;

4)命题存在的否定是对于任意

5)设函数,若函数恰有三个零点,则实数m的取值范围为.

其中不正确的命题序号为______________ .

查看答案和解析>>

同步练习册答案