(本小题满分15分)
已知函数
(Ⅰ)求函数的极值;
(Ⅱ)对于曲线上的不同两点,如果存在曲线上的点,且,使得曲线在点处的切线∥,则称为弦的伴随切线。特别地,当,时,又称为的λ——伴随切线。
(ⅰ)求证:曲线的任意一条弦均有伴随切线,并且伴随切线是唯一的;
(ⅱ)是否存在曲线C,使得曲线C的任意一条弦均有伴随切线?若存在,给出一条这样的曲线 ,并证明你的结论; 若不存在 ,说明理由。
(Ⅰ)当时,没有极值;
当时,的极大值为,没有极小值。(Ⅱ)见解析
【解析】(Ⅰ)
当,,函数在内是增函数,
∴函数没有极值。 当时,令,得。
当变化时,与变化情况如下表:
+ |
0 |
- |
|
单调递增 |
极大值 |
单调递减 |
∴当时,取得极大值。
综上,当时,没有极值;
当时,的极大值为,没有极小值。
(Ⅱ)(ⅰ)设是曲线上的任意两点,要证明
有伴随切线,只需证明存在点,使得
,且点不在上。
∵,即证存在,使得,即成立,且点不在上。 …………………8分
以下证明方程在内有解。…
记,则。
令,
∴,
∴在内是减函数,∴。
取,则,即。……9分
同理可证。∴。
∴函数在内有零点。
即方程在内有解。又对于函数取,则
可知,即点Q不在上。
是增函数,∴的零点是唯一的,
即方程在内有唯一解。
综上,曲线上任意一条弦均有伴随切线,并且伴随切线是唯一的。
(ⅱ)取曲线C:,则曲线的任意一条弦均有伴随切线。
证明如下:
设是曲线C上任意两点,
则,
又,
即曲线C:的任意一条弦均有伴随切线。
注:只要考生给出一条满足条件的曲线,并给出正确证明,均给满分。若只给曲
线,没有给出正确的证明,请酌情给分。
解法二:
(Ⅰ)同解法一。
(Ⅱ)(ⅰ)设是曲线上的任意两点,要证明
有伴随切线,只需证明存在点,使得
,且点不在上。 ∵,即证存在,使得,
即成立,且点不在上。 …………… 8分
以下证明方程在内有解。
设。…
则。
记,
∴,
∴在内是增函数,
∴。 同理。。
∴方程在内有解。 又对于函数,
∵,,
可知,即点Q不在上。
又在内是增函数,
∴方程在内有唯一解。
综上,曲线上任意一条弦均有伴随切线,并且伴随切线是唯一的。
(ⅱ)同解法一。
科目:高中数学 来源:2012-2013学年福建省高三上学期期中理科数学试卷(解析版) 题型:解答题
(本小题满分15分)
已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若,试分别解答以下两小题.
(ⅰ)若不等式对任意的恒成立,求实数的取值范围;
(ⅱ)若是两个不相等的正数,且,求证:.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三下学期3月联考理科数学 题型:解答题
(本小题满分15分).
已知、分别为椭圆:的
上、下焦点,其中也是抛物线:的焦点,
点是与在第二象限的交点,且。
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点P(1,3)和圆:,过点P的动直线与圆相交于不同的两点A,B,在线段AB取一点Q,满足:,(且)。求证:点Q总在某定直线上。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:解答题
(本小题满分15分)
如图已知,椭圆的左、右焦点分别为、,过的直线与椭圆相交于A、B两点。
(Ⅰ)若,且,求椭圆的离心率;
(Ⅱ)若求的最大值和最小值。
查看答案和解析>>
科目:高中数学 来源:2014届浙江省宁波市高一上学期期末考试数学 题型:解答题
(本小题满分15分)若函数在定义域内存在区间,满足在上的值域为,则称这样的函数为“优美函数”.
(Ⅰ)判断函数是否为“优美函数”?若是,求出;若不是,说明理由;
(Ⅱ)若函数为“优美函数”,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011年江苏省高二下学期期中考试理数 题型:解答题
(本小题满分15分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题.求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到文科题的概率
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com