精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)当时,判断函数的单调性;

2)若恒成立,求的取值范围;

3)已知,证明.

【答案】1)当时,函数在区间单调递增,单调递减;

2

3)证明过程见解析

【解析】

1)先求函数的定义域,再求导数,分别令即可求出单调性;(2)分离变量得恒成立,转化为求的最大值,然后求导数判断的单调性即可求出的最大值,从而求得结果;(3)对两边取对数,化简变形可得,由(2)可知上单调递减,结合条件即可证明.

由题意可知,函数的定义域为:.

1)当时,

,则 ,则

所以函数在区间单调递增,单调递减.

2)若恒成立,则恒成立,

又因为,所以分离变量得恒成立,

,则,所以

时,;当时,

即函数上单调递增,在上单调递减.

时,函数取最大值,,所以.

3)欲证,两边取对数,只需证明

只需证明,即只需证明

由(2)可知上单调递减,且

所以,命题得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,平面..M的中点,P的中点,点Q在线段上,且.

1)证明:

2)若二面角的大小为60°,求的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:极坐标与参数方程]

在直角坐标系中,曲线的参数方程为是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若射线 与曲线交于两点,与曲线交于两点,求取最大值时的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面,, .,,,的中点.

(Ⅰ)证明:⊥平面;

(Ⅱ)若二面角的余弦值是,求的值;

(Ⅲ)若,在线段上是否存在一点,使得. 若存在,确定点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,,且的最小值为,的图像的相邻两条对称轴之间的距离为.

1)求函数的解析式和单调递增区间;

2)在中,角,,所对的边分别为,,.,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中,平面.

(1)证明:.

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推进农村经济结构调整,某乡村举办水果观光采摘节,并推出配套乡村游项目.现统计了4月份100名游客购买水果的情况,得到如图所示的频率分布直方图.

1)若将购买金额不低于80元的游客称为优质客户”,现用分层抽样的方法从样本的优质客户中抽取5人,求这5人中购买金额不低于100元的人数;

2)从(1)中的5人中随机抽取2人作为幸运客户免费参加乡村游项目,请列出所有的基本事件,并求2人中至少有1人购买金额不低于100元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的顶点边上的高所在的直线的方程为中点,且所在的直线的方程为.

1)求边所在的直线方程;

2)求边所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 中,分别为边的中点,以为折痕把折起,使点到达点的位置,且

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案