精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=sinx,若存在x1,x2,…,xn满足0≤x1<x2<…<xn≤nπ,n∈N+,且|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+|f(xm-1)-f(xm)|=12,(m≥2,m∈N+),当m取最小值时,n的最小值为6.

分析 由正弦函数的有界性可得,对任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)-f(xj)|≤f(x)max-f(x)min=2,要使m取得最小值,尽可能多让xi(i=1,2,3,…,m)取得最高点,然后作图可得满足条件的最小m值.

解答 解:y=sinx对任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)-f(xj)|≤f(x)max-f(x)min=2,
要使m取得最小值,尽可能多让xi(i=1,2,3,…,m)取得最高点,
考虑0≤x1<x2<…<xm≤nπ,|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+|f(xm-1)-f(xm)|=12,
则按下图取值即可满足条件,

∴m的最小值为8,此时n的值为6.
故答案为:6.

点评 本题主要考查正弦函数的图象和性质,考查分析问题和解决问题的能力,考查数学转化思想方法,正确理解对任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)-f(xj)|≤f(x)max-f(x)min=2是解答该题的关键,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设Sn为数列{an}的前n项和,Sn+$\frac{1}{{2}^{n}}$=(-1)nan(n∈N*),则数列{Sn}的前9项和为-$\frac{341}{1024}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线x-y-3=0与圆(x-1)2+y2=2的位置关系(  )
A.相离B.相切C.相交D.无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等比数列{an}中,已知a1=3,an=96,其前n顶和Sn=189,则n的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知sin($\frac{π}{4}$-θ)=$\frac{5}{13}$,0<θ<$\frac{π}{4}$,求cos2θ,cos($\frac{π}{4}$+θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.以椭圆$\frac{x^2}{9}+\frac{y^2}{5}=1$的顶点为焦点,焦点为顶点的双曲线C,其左右焦点分别为F1,F2,已知点M(2,1),双曲线C上的点P(x0,y0)(x0>0,y0>0)满足$\frac{{\overrightarrow{P{F_1}}•\overrightarrow{M{F_1}}}}{{|{\overrightarrow{P{F_1}}}|}}=\frac{{\overrightarrow{{F_2}{F_1}}•\overrightarrow{M{F_1}}}}{{|{\overrightarrow{{F_2}{F_1}}}|}}$,则${S_{△PM{F_1}}}-{S_{△PM{F_2}}}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知角A为锐角,则f(A)=$\frac{[cos(π-2A)-1]sin(π+\frac{A}{2})sin(\frac{π}{2}-\frac{A}{2})}{si{n}^{2}(\frac{π}{2}-\frac{A}{2})-si{n}^{2}(π-\frac{A}{2})}$+cos2A的最大值为(  )
A.$\frac{\sqrt{2}+1}{2}$B.$\frac{\sqrt{2}-1}{2}$C.$\frac{\sqrt{3}-1}{4}$D.$\frac{\sqrt{3}+1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x1,x2,x3,x4,x5是1,2,3,4,5的任一排列,则x1+2x2+3x3+4x4+5x5的最小值是35.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.sin(-435°)的值等于$-\frac{\sqrt{2}+\sqrt{6}}{4}$.

查看答案和解析>>

同步练习册答案