精英家教网 > 高中数学 > 题目详情
6.已知数列an=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$(n∈N*
(1)若a>1,对于任意n≥2,不等式a2n-an>$\frac{7}{12}$(log(a+1)x-1ogax+1)恒成立,求x的取值范围;
(2)求证:${a}_{n}^{2}$+$\frac{7}{4}$>2(a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{n}}{n}$)(n∈N*

分析 (1)把an=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$(n∈N*)代入a2n-an>$\frac{7}{12}$(log(a+1)x-1ogax+1),得到$\frac{7}{12}>\frac{7}{12}$(log(a+1)x-1ogax+1)恒成立,然后利用对数式的性质可得x的取值范围;
(2)由${a}_{n}={a}_{n-1}+\frac{1}{n}$,得${{a}_{n}}^{2}-{{a}_{n-1}}^{2}=\frac{2{a}_{n}}{n}-\frac{1}{{n}^{2}}$,利用累加法可得${{a}_{n}}^{2}+\frac{7}{4}$=$2({a}_{1}+\frac{{a}_{2}}{2}+\frac{{a}_{3}}{3}+…+\frac{{a}_{n}}{n})-$$(1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}})$$+\frac{7}{4}$.即要证原不等式成立,只需证$1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}<\frac{7}{4}$.再利用放缩法证得该结论.

解答 (1)解:∵an=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$,
∴a2n-an=$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}$,
对于任意n≥2,a2n-an的最小值为$\frac{1}{3}+\frac{1}{4}=\frac{7}{12}$.
若a>1,对于任意n≥2,不等式a2n-an>$\frac{7}{12}$(log(a+1)x-1ogax+1)恒成立,
即$\frac{7}{12}>\frac{7}{12}$(log(a+1)x-1ogax+1)恒成立,
∴log(a+1)x-1ogax+1<1恒成立,也就是log(a+1)x-1ogax<0恒成立,
即log(a+1)x<1ogax,
则$\frac{lgx}{lg(a+1)}<\frac{lgx}{lga}$,
∵a>1,∴lgx[lg(a+1)-lga]>0,
∴x>1.
故x的取值范围是(1,+∞);
(2)证明:∵${a}_{n}={a}_{n-1}+\frac{1}{n}$,
∴$({a}_{n}-\frac{1}{n})^{2}={{a}_{n-1}}^{2}$,即${{a}_{n}}^{2}-{{a}_{n-1}}^{2}=\frac{2{a}_{n}}{n}-\frac{1}{{n}^{2}}$,

${{a}_{n-1}}^{2}-{{a}_{n-2}}^{2}=\frac{2{a}_{n-1}}{n-1}-\frac{1}{(n-1)^{2}}$,
${{a}_{3}}^{2}-{{a}_{2}}^{2}=\frac{2{a}_{3}}{3}-\frac{1}{{3}^{2}}$,
${{a}_{2}}^{2}-{{a}_{1}}^{2}=\frac{2{a}_{2}}{2}-\frac{1}{{2}^{2}}$.
累加得:${{a}_{n}}^{2}-{{a}_{1}}^{2}=2(\frac{{a}_{2}}{2}+\frac{{a}_{3}}{3}+…+\frac{{a}_{n}}{n})$$-(\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}})$,
∴${{a}_{n}}^{2}=2({a}_{1}+\frac{{a}_{2}}{2}+\frac{{a}_{3}}{3}+…+\frac{{a}_{n}}{n})-(1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}})$,
∴${{a}_{n}}^{2}+\frac{7}{4}$=$2({a}_{1}+\frac{{a}_{2}}{2}+\frac{{a}_{3}}{3}+…+\frac{{a}_{n}}{n})-$$(1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}})$$+\frac{7}{4}$.
要证原不等式成立,只需证$1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}<\frac{7}{4}$.
当n=1,2时,不等式成立.
当n≥3时,$1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}<1+\frac{1}{{2}^{2}}+\frac{1}{2•3}+\frac{1}{3•4}+…+\frac{1}{(n-1)•n}$
=$1+\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n-1}-\frac{1}{n}$=$\frac{7}{4}-\frac{1}{n}<\frac{7}{4}$.
∴${a}_{n}^{2}$+$\frac{7}{4}$>2(a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{n}}{n}$)(n∈N*)成立.

点评 本题是数列与不等式的综合题,考查了不等式恒成立问题,考查数列不等式的证明,考查对所学知识的迁移能力,解答(2)的关键是利用${a}_{n}={a}_{n-1}+\frac{1}{n}$,得到${{a}_{n}}^{2}-{{a}_{n-1}}^{2}=\frac{2{a}_{n}}{n}-\frac{1}{{n}^{2}}$,同时注意放缩法的合理运用,属难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.数列{an}中,a1=2,a2=1,且$\frac{1}{a_n}+\frac{1}{{{a_{n+2}}}}=\frac{2}{{{a_{n+1}}}}$(n∈N*),则a6等于(  )
A.-3B.-$\frac{1}{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,若sinA:sinB:sinC=3:4:6,则cosC=(  )
A.$\frac{11}{24}$B.$\frac{13}{24}$C.-$\frac{13}{24}$D.-$\frac{11}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知命题p:椭圆方程$\frac{{x}^{2}}{2m-8}$+$\frac{{y}^{2}}{m-3}$=1.表示焦点在y轴上的椭圆;命题q:复平面内表示复数z=(m2-8m+15)+(m2-5m-14)i的点在第三象限.
(1)若命题p为真命题,求实数m的范围;
(2)若命题“p∨q”为真,命题“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.化简求值:
(1)1.10+$\root{3}{512}$-0.5-2+lg25+2lg2
(2)已知2x=72y=A,且$\frac{1}{x}$+$\frac{1}{y}$=2,求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的偶函数f(x)的周期为2,0<x<1,f(x)=-log2(1-x),则当1<x<2,下面说法正确的是(  )
A.f(x)单调递增,f(x)<0B.f(x)单调递增,f(x)>0C.f(x)单调递减,f(x)<0D.f(x)单调递减,f(x)>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某校高考数学成绩ξ近似地服从正态分布N(100,52),且P(ξ<110)=0.98,P(90<ξ<100)的值为0.48.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆的切线长与|MQ|的比值分别为1或2时,分别求出点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且PF1⊥PF2,|PF1|=$\frac{4}{3}$,|PF2|=$\frac{14}{3}$.
(1)求椭圆的方程;    
(2)若直线l:y=kx+3与椭圆恒有不同交点A、B,且$\overrightarrow{OA}$•$\overrightarrow{OB}$>1(O为坐标原点),求k的取值范围.

查看答案和解析>>

同步练习册答案