精英家教网 > 高中数学 > 题目详情
设函数f(x)=-cos2x-4t•sin
x
2
cos
x
2
+2t2-6t+2(x∈R)

(1)当t=1时,求f(x)的最小值;
(2)若t∈R,将f(x)的最小值记为g(t),求g(t)的表达式;
(3)当-1≤t≤1时,关于t的方程g(t)=kt有且只有一个实根,求实数k的取值范围.
分析:(1)当t=1时,f(x)=(sinx-1)2-4,故当sinx=1时,f(x)有最小值等于-4.
(2)若t∈R,由f(x)=(sinx-t)2+t2-6t+1,分t<-1、-1≤t≤1、t>1三种情况分别求出f(x)的
最小值g(t)的解析式.
(3)由题意可得方程 t2-6t+1-kt=0 在[-1,1]内有且只有一个实根,分△=0和△>0两种情况,分别求得求得
实数k的取值范围,再把得到的实数k的取值范围取并集,即得所求.
解答:解:(1)当t=1时,f(x)=-cos2x-2sinx+2-6+2=sin2x-2sinx-3=(sinx-1)2-4,
故当sinx=1时,f(x)有最小值等于-4.
(2)若t∈R,∵f(x)=-cos2x-2tsinx+2t2-6t+2=sin2x-2tsinx+2t2-6t+1=(sinx-t)2+t2-6t+1,
且-1≤sinx≤1.
当t<-1时,则当sinx=-1时,f(x)取得最小值g(t)=(-1-t)2+t2-6t+1=2t2-4t+2.
当-1≤t≤1时,则当sinx=t时,f(x)的最小值g(t)=t2-6t+1.
当t>1时,则当sinx=1时,f(x)的最小值g(t)=(1-t)2+t2-6t+1=2t2-8t+2.
综上,g(t)=
2t2- 4t  + 2 ,   t <-1
t2- 6t + 1   , -1≤t ≤1
2t2- 8t +2 ,   t >1

(3)当-1≤t≤1时,关于t的方程g(t)=kt 即 t2-6t+1=kt.由题意可得 
关于t的方程 t2-6t+1-kt=0 在[-1,1]内有且只有一个实根,
①当△=(6+k)2-4=0时,应有-1≤
6+k
2
≤1,解得  k=-4,或k=-8.
若 k=-4,方程有两个相等的根t=1,若 k=-8,方程有两个相等的根t=-1.
②当△=(6+k)2-4>0时,即 k<-8,或k>-4时,
令h(t)=t2-6t+1-kt,由题意可得  h(-1)h(1)=(k+8)(-k-4)<0,解得 k<-8,或 k>-4.
综合①②可得,当k≥-4,或k≤-8 时,关于t的方程g(t)=kt有且只有一个实根.
故所求的实数k的取值范围为(-∞,-8[∪[-4,+∞).
点评:本题考查三角函数的恒等变换及化简求值,三角函数的最值,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
x2-4x+6,x≥0
x+6,x<0
则不等式f(x)>f(1)的解集是(  )
A、(-3,1)∪(3,+∞)
B、(-3,1)∪(2,+∞)
C、(-1,1)∪(3,+∞)
D、(-∞,-3)∪(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+bx+c,(x<0)
-x+3,(x≥0)
,若f(-4)=f(0),f(-2)=-1,
(1)求函数f(x)的解析式;
(2)若f(x)=-1,求相应x的值;
(3)画出函数f(x)的图象,并说出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
ax2+1bx+c
是奇函数(a,b,c都是整数),且f(1)=2,f(2)<3.求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)在一次人才招聘会上,有A、B、C三种不同的技工面向社会招聘.已知某技术人员应聘A、B、C三种技工被录用的概率分别是0.8、0.5、0.2 (允许受聘人员同时被多种技工录用).
(I)求该技术人员被录用的概率;
(Ⅱ)设X表示该技术人员被录用的工种数与未被录用的工种数的积.
i) 求X的分布列和数学期望;
ii)“设函数f(x)=3sin
(x+X)4
π,x∈R
是偶函数”为事件D,求事件D发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上饶二模)设函数f(x)=
x2+bx+c,(x≥0)
2,(x<0)
,若f(4)=f(0),f(2)=-2.则函数F(x)=f(|x|)-|x|的零点个数为(  )

查看答案和解析>>

同步练习册答案