精英家教网 > 高中数学 > 题目详情
16.已知命题p:?x∈R,x2+2x+a≤0是真命题,则实数a的取值范围是(-∞,1].

分析 根据特称命题的等价条件,建立不等式关系即可.

解答 解:若命题p:?x∈R,x2+2x+a≤0是真命题,
则判别式△=4-4a≥0,
即a≤1,
故答案为:(-∞,1].

点评 本题主要考查命题真假的应用,根据特称命题的真假性转换为一元二次不等式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.对于任意实数a、b、c、d,命题:
①若a>b,则$\frac{1}{a}$<$\frac{1}{b}$;
②若a>b,c>d,则a-c>b-d;
③若ac2>bc2,则a>b;
④若a>b>0,c>d,则ac>bd.
其中真命题的个数是(  )
A.0B.2C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC中,∠C为直角,D为边AC上一点,K为BD上一点,且∠ABC=∠KAD=∠AKD.证明:BK=2DC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.三角形的三个内角的度数之比为1:2:3,其最小内角的弧度数为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设集合U=R,A={x||x-1|<1},B={x|x2+x-2<0};
(1)求:A∩B,(∁UA)∪B;
(2)设集合C={x|2-a<x<a},若C⊆(A∪B),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,∠B=45°,D是边BC上一点,AD=5,CD=3,AC=7.
(1)求∠ADC的值;
(2)求$\overrightarrow{BA}•\overrightarrow{DA}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.正整数x1、x2、…、x7满足x6=144,xn+3=xn+2(xn+1+xn),n=1,2,3…,求x7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,以|F1F2|为直径的圆与双曲线交于A,B,C,D四点,且四边形ABCD的一条对角线所在的直线的斜率为$\frac{\sqrt{3}}{3}$,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图.在底面为正方形的四棱锥P-ABCD中,PA⊥平面ABCD,则图中互相垂直的平面有5对.

查看答案和解析>>

同步练习册答案