【题目】已知椭圆的离心率为,直线与相切于点.
(1)求椭圆的方程;
(2)若直线与椭圆交于不同的两点,,与直线相交于(,,,均不重合).证明:为定值.
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax.
(1)若a=-2,求函数f(x)的解析式;
(2)若函数f(x)为R上的单调减函数,
①求a的取值范围;
②若对任意实数m,f(m-1)+f(m2+t)<0恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面,底面是直角梯形,,,是上的一点.
(1)求证:平面平面;
(2)若是的中点,,且直线与平面所成角的正弦值为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数同时满足:(1)对于定义域内的任意,有;(2)对于定义域内的任意,当时,有,则称函数为“理想函数”.给出下列四个函数:①;②;③;④.
其中是“理想函数”的序号是( )
A.①②B.②③C.②④D.③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线的参数方程为(, 为参数).以坐标原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.
(1)当时,求曲线上的点到直线的距离的最大值;
(2)若曲线上的所有点都在直线的下方,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某影院共有1000个座位,票价不分等次,根据该影院的经营经验,当每张票价不超过10元时,票可全部售出,当每张票价高于10元时,每提高1元,将有30张票不能售出,为了获得更好的收益,需给影院一个合适的票价,符合的基本条件是:
①为了方便找零和算账,票价定为1元的整数倍;
②影院放映一场电影的成本费为5750元,票房收入必须高于成本支出.
(1)设定价为()元,净收入为元,求关于的表达式;
(2)每张票价定为多少元时,放映一场的净收入最多?此时放映一场的净收入为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为奇函数.
(1)求a的值,并证明是R上的增函数;
(2)若关于t的不等式f(t2-2t)+f(2t2-k)<0的解集非空,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是椭圆()的左顶点,左焦点是线段的中点,抛物线的准线恰好过点.
(1)求椭圆的方程;
(2)如图所示,过点作斜率为的直线交椭圆于点,交轴于点,若为线段的中点,过作与直线垂直的直线,证明对于任意的(),直线过定点,并求出此定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】采用系统抽样方法从人中抽取人做问卷调查,为此将他们随机编号为,,,,分组后某组抽到的号码为41.抽到的人中,编号落入区间 的人数为( )
A. 10 B. C. 12 D. 13
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com