精英家教网 > 高中数学 > 题目详情
15.△ABC中,角A,B,C所对的边分别为a,b,c.若a=3,b=2,cos(A+B)=$\frac{1}{3}$,则边c=$\sqrt{17}$.

分析 由已知利用三角形内角和定理,诱导公式可求cosC,进而利用余弦定理即可计算得解.

解答 解:∵cos(A+B)=cos(π-C)=$\frac{1}{3}$,可得:cosC=-$\frac{1}{3}$,
又∵a=3,b=2,
∴由余弦定理可得:c=$\sqrt{{a}^{2}+{b}^{2}-2abcosC}$=$\sqrt{{3}^{2}+{2}^{2}-2×3×2×(-\frac{1}{3})}$=$\sqrt{17}$.
故答案为:$\sqrt{17}$.

点评 本题主要考查了三角形内角和定理,诱导公式,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知命题p:“双曲线$\frac{y^2}{3}-\frac{x^2}{m}=1$的离心率$e∈({\sqrt{2},+∞})$”,命题q:“$\frac{{2{x^2}}}{m}+\frac{y^2}{m-2}=1$是焦点在x轴上的椭圆方程”.若命题“p∧q”是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.是否存在实数 a,使函数f(x)=cos2x+2asinx+3a-1在闭区间上的最大值为 4,若存在,则求出对应的 a 值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx-$\frac{1}{2}{x^2}$,g(x)=$\frac{1-m}{2}{x^2}$+x,m∈R,令F(x)=f(x)+g(x).
(1)求函数f(x)的单调递增区间;
(2)若关于x的不等式F(x)≤mx-1恒成立,求整数m的最小值;
(3)若m=-1,且正实数x1,x2满足F(x1)=-F(x2),求x1+x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若集合A={1,2,3},B={0,1,2},则A∩B=(  )
A.{0,1,2,3}B.{0,1,2}C.{1,2}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在直三棱柱ABC-A1B1C1中,AC⊥BC,点M是侧面ABB1A1内的一点,若MC与平面ABC所成的角为30°,MC与平面ACC1A1所成的角也为30°,则MC与平面BCC1B1所称的角正弦值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若f(x)=5cosx,则f′($\frac{π}{2}$)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.点(x,y)满足$\left\{\begin{array}{l}x≥1\\ y≥1\\ x+y≤3\end{array}\right.$,则x2+y2-8x-10y的取值范围为[-23,-16].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线l的方程为3x-4y+4=0
(1)求过点(-2,2)且与直线l垂直的直线方程;
(2)求与直线l平行且距离为2的直线方程.

查看答案和解析>>

同步练习册答案