精英家教网 > 高中数学 > 题目详情
已知点P(1,
3
)是曲线f(x)=Asin(ωx+φ)(A>0,ω>0|φ|<
π
2
)的一个最高点,且f(9-x)=f(9+x),曲线区间(1,9)内与x轴有唯一一个交点,求这个函数的解析式,并作出一个周期的图象.
分析:根据点P(1,
3
)是曲线f(x)=Asin(ωx+φ)(A>0,ω>0|φ|<
π
2
)的一个最高点,可知A=
3
,由f(9-x)=f(9+x)得函数的一条对称轴方程为x=9,根据曲线区间(1,9)内与x轴有唯一一个交点,可知函数的周期,因此可求得函数的解析式;利用五点法列表,描点,即可画出函数的图象.
解答:解:∵点P(1,
3
)是曲线f(x)=Asin(ωx+φ)(A>0,ω>0|φ|<
π
2
)的一个最高点,
∴A=
3

∵f(9-x)=f(9+x),曲线区间(1,9)内与x轴有唯一一个交点,
∴x=9是曲线的一条对称轴,且
T
2
=8

∴T=16,
T=
ω
,ω=
π
8

π
8
+φ=
π
2
+2kπ,k∈Z

φ=
8
+2kπ,k∈Z
,∵|φ|<
π
2

φ=
8

∴f(x)=
3
sin(
π
8
x+
8
),
其图象如图所示:
点评:本题考查y=Asin(ωx+φ)的解析式的求法以及五点法作图,根据题意求出周期是解题的关键,考查运算能力和作图能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网与向量、圆交汇.例5:已知F1、F2分别为椭圆C1
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
5
3

(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:
AP
=-λ
PB
AQ
QB
,(λ≠0且λ≠±1).问点Q是否总在某一定直线上?若在,求出这条直线,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,抛物线C1:y2=8x与双曲线C2
x2
a2
-
y2
b2
=1(a>0,b>0)有公共焦点F2,点A是曲线C1,C2在第一象限的交点,且|AF2|=5.
(1)求双曲线C2的方程;
(2)以F1为圆心的圆M与双曲线的一条渐近线相切,圆N:(x-2)2+y2=1,已知点P(1,
3
),过点P作互相垂直且分别与圆M圆N相交的直线l1,l2,设l1被圆M截得的弦长为s,l2被圆N截得的弦长为t,
s
t
是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(-1,3),F为椭圆
x2
16
+
y2
12
=1
的右焦点,点Q在椭圆上移动,则|QF|+|PQ|的最小值是
8-
10
8-
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(-1,
3
2
)是椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.
(1)求椭圆E的方程;
(2)设A、B是椭圆E上两个动点,
PA
+
PB
PO
(0<λ<4,且λ≠2).求证:直线AB的斜率等于椭圆E的离心率;
(3)在(2)的条件下,当△PAB面积取得最大值时,求λ的值.

查看答案和解析>>

同步练习册答案