【题目】设函数.
(1)若函数在上不单调,求实数a的取值范围;
(2)求函数在的最小值.
【答案】(1)
(2).
【解析】
(1)分与两种情况将写成分段函数的形式,再根据对称轴与区间的位置关系讨论即可
(2)先分 ,两种情况讨论,再根据两个二次函数的对称轴再对进行讨论分析最小值的取值情况.
(1)由化为
则二次函数对称轴为.
对称轴为
则当时, 若函数在上不单调则对称轴在之间,
即,因为故化简得,即
当时, 满足题意.
当时, 若函数在上不单调则对称轴在之间,
即,因为故
综上所述,
(2) 由(1) ,
对称轴为.
对称轴为
1.当时,
当,即时,在上单调递增,
此时
当即时, 在的对称轴处取得最小值,
此时
2.当时,
当,即时,在上单调递增,
此时
当,即时, 在的对称轴处取得最小值,
此时
综上所述,
科目:高中数学 来源: 题型:
【题目】某校高三有500名学生,在一次考试的英语成绩服从正态分布,数学成绩的频率分布直方图如下:
(Ⅰ)如果成绩大于135的为特别优秀,则本次考试英语、数学特别优秀的大约各多少人?
(Ⅱ)试问本次考试英语和数学的成绩哪个较高,并说明理由.
(Ⅲ)如果英语和数学两科都特别优秀的共有6人,从(Ⅰ)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有人,求的分布列和数学期望。
参考公式及数据:
若,则,
,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,为曲线上的动点,与轴、轴的正半轴分别交于,两点.
(1)求线段中点的轨迹的参数方程;
(2)若是(1)中点的轨迹上的动点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数和都是定义在集合上的函数,对于任意的,都有成立,称函数与在上互为“互换函数”.
(1)函数与在上互为“互换函数”,求集合;
(2)若函数 (且)与在集合上互为“互换函数”,求证:;
(3)函数与在集合且上互为“互换函数”,当时,,且在上是偶函数,求函数在集合上的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在△中,,分别为,的中点,为的中点,,.将△沿折起到△的位置,使得平面平面,如图2.
(Ⅰ)求证:;
(Ⅱ)求直线和平面所成角的正弦值;
(Ⅲ)线段上是否存在点,使得直线和所成角的余弦值为?若存在,求出的值;若不存在,说明理由.
图1 图2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产、两种产品,生产每产品所需的劳动力和煤、电消耗如下表:
产品品种 | 劳动力(个) | 煤 | 电 |
已知生产产品的利润是万元,生产产品的利润是万元.现因条件限制,企业仅有劳动力个,煤,并且供电局只能供电,则企业生产、两种产品各多少吨,才能获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a,b,c分别是的三条边,且.我们知道,如果为直角三角形,那么(勾股定理).反过来,如果,那么为直角三角形(勾股定理的逆定理).由此可知,为直角三角形的充要条件是.请利用边长a,b,c分别给出为锐角三角形和钝角三角形的一个充要条件,并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin2(x+)-2cos(x-)-5a+2.
(1)设t=sinx+cosx,将函数f(x)表示为关于t的函数g(t),求g(t)的解析式;
(2)对任意x∈[0,],不等式f(x)≥6-2a恒成立,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com