如图所示,已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=,斜率为2的直线l过点A(2,3).
(1)求椭圆E的方程;
(2)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.
科目:高中数学 来源: 题型:解答题
(12分)(2011•福建)如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.
(Ⅰ)求实数b的值;
(Ⅱ)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆C1:=1(a>b>0)的左、右焦点分别为为,恰是抛物线C2:的焦点,点M为C1与C2在第一象限的交点,且|MF2|=.
(1)求C1的方程;
(2)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,.
(1)求抛物线的方程;
(2) 设点是抛物线上的两点,的角平分线与轴垂直,求的面积最大时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点作的平行线交曲线于两个不同的点.
(1)求曲线的方程;
(2)试探究和的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(3)记的面积为,的面积为,令,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C: (a>b>0)的离心率为,且椭圆C上一点与两个焦点F1,F2构成的三角形的周长为2+2.
(1)求椭圆C的方程;
(2)过右焦点F2作直线l 与椭圆C交于A,B两点,设,若,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2011•浙江)已知抛物线C1:x2=y,圆C2:x2+(y﹣4)2=1的圆心为点M
(1)求点M到抛物线C1的准线的距离;
(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设P是圆上的动点,点D是P在轴上投影,M为PD上一点,且.
(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点M(x,y)到直线l:x = 4的距离是它到点N(1,0)的距离的2倍.
(1)求动点M的轨迹C的方程;
(2)过点P(0,3)的直线m与轨迹C交于A, B两点. 若A是PB的中点, 求直线m的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com