精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=Asin(x+ ),x∈R,且f( )=
(1)求A的值;
(2)若f(θ)+f(﹣θ)= ,θ∈(0, ),求f( ﹣θ).

【答案】
(1)解:∵函数f(x)=Asin(x+ ),x∈R,且f( )=

∴Asin( + )=Asin =A =

∴A=


(2)解:由(1)可得 f(x)= sin(x+ ),

∴f(θ)+f(﹣θ)= sin(θ+ )+ sin(﹣θ+ )=2 sin cosθ= cosθ=

∴cosθ= ,再由 θ∈(0, ),可得sinθ=

∴f( ﹣θ)= sin( ﹣θ+ )= sin(π﹣θ)= sinθ=


【解析】(1)根据题意f( )=,代入f(x)的解析式可得出A的值,(2) 根据f(θ)+f(﹣θ)=,代入使用两角和与差的正弦公式可解得cosθ,再由同角的三角函数关系得出sinθ,由诱导公式对f( ﹣θ)进行化简可得答案.
【考点精析】解答此题的关键在于理解两角和与差的正弦公式的相关知识,掌握两角和与差的正弦公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD﹣A1B1C1D1中,M,N分别为AB,BC的中点.

(1)求证:平面B1MN⊥平面BB1D1D;
(2)当点P在DD1上运动时,是否都有MN∥平面A1C1P,证明你的结论;
(3)若P是D1D的中点,试判断PB与平面B1MN是否垂直?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】8把椅子摆成一排,4人随机就座,任何两人不相邻的坐法种数为(
A.144
B.120
C.72
D.24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+bx2+cx+d的图象如图,则函数y=lnf′(x)的单调减区间为(
A.[0,3)
B.[﹣2,3]
C.(﹣∞,﹣2)
D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分图象如图所示,将y=f(x)的图象向右平移 个单位长度后得到函数y=g(x)的图象.
(1)求函数y=g(x)的解析式;
(2)在△ABC中,角A,B,C满足2sin2 =g(C+ )+1,且其外接圆的半径R=2,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2﹣tcosx.若其导函数f′(x)在R上单调递增,则实数t的取值范围为(
A.[﹣1,﹣ ]
B.[﹣ ]
C.[﹣1,1]
D.[﹣1, ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣2
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若函数y=f(x)与y=g(x)的图象恰有一个公共点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某媒体对“男女同龄退休”这一公众关注的问题进行 了民意调査,右表是在某单位得到的数据(人数):

赞同

反对

合计

5

6

11

11

3

14

合计

16

9

25

附表:

P(K2≥K)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828


(1 )能否有90%以上的把握认为对这一问题的看法与性别有关?
【答案】解:解:K2= ≈2.932>2.706,
由此可知,有90%的把握认为对这一问题的看法与性别有关
(1)进一步调查:(ⅰ)从赞同“男女同龄退休”16人中选出3人进行陈述发言,求事件“男士和女士各至少有1人发言”的概率; (ⅱ)从反对“男女同龄退休”的9人中选出3人进行座谈,设参加调査的女士人数为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等差数列,且a1+a3=8,a2+a4=12.
(1)求{an}的通项公式;
(2)设 ,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案