精英家教网 > 高中数学 > 题目详情
精英家教网如图,四棱锥S-ABCD的底面为正方形,SD⊥平面ABCD,SD=AD=2,请建立空间直角坐标系解决下列问题.
(1)求证:AC⊥SB;
(2)求直线SB与平面ADS所成角的正弦值.
分析:(1)建立如图所示的坐标系,证明
AC
SB
=0,即可得出结论;
(2)取平面ADS的一个法向量,求cos
SB
DC
,即可求直线SB与平面ADS所成角的正弦值.
解答:精英家教网(1)证明:建立如图所示的坐标系,则A(2,0,0),B(2,2,0),C(0,2,0),S(0,0,2),
AC
=(-2,2,0),
SB
=(2,2,-2),
AC
SB
=0,
∴AC⊥SB;
(2)解:取平面ADS的一个法向量
DC
=(0,2,0),则
cos
SB
DC
=
SB
DC
|
SB
||
DC
|
=
3
3

∴直线SB与平面ADS所成角的正弦值是
3
3
点评:本题考查线线垂直,考查线面角,考查向量知识的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD的底面是边长为3的正方形,SD丄底面ABCD,SB=3
3
,点E、G分别在AB,SG 上,且AE=
1
3
AB  CG=
1
3
SC.
(1)证明平面BG∥平面SDE;
(2)求面SAD与面SBC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•醴陵市模拟)如图,四棱锥S-ABCD的底面是矩形,SA⊥底面ABCD,P为BC边的中点,AD=2,AB=1.SP与平面ABCD所成角为
π4
. 
(1)求证:平面SPD⊥平面SAP;
(2)求三棱锥S-APD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD底面ABCD是正方形,SA⊥底面ABCD,E是SC上一点,且SE=2EC,SA=6,AB=2.
(1)求证:平面EBD⊥平面SAC;
(2)求三棱锥E-BCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•西城区二模)如图,四棱锥S-ABCD中,平面SAC与底面ABCD垂直,侧棱SA、SB、SC与底面ABCD所成的角均为45°,AD∥BC,且AB=BC=2AD.
(1)求证:四边形ABCD是直角梯形;
(2)求异面直线SB与CD所成角的大小;
(3)求直线AC与平面SAB所成角的大小.

查看答案和解析>>

同步练习册答案