精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为是椭圆的上顶点,,且的面积为1.

(1)求椭圆的标准方程;

(2)设是椭圆上的两个动点,,求当的面积取得最大值时,直线的方程.

【答案】(1);(2)

【解析】

1)根据三角形的面积公式,以及等边三角形的性质即可求出bc,再根据a2b2+c2,即可得到.(2)设,联立方程组根据根与系数的关系,利用MANA,得到1,即可得出.

(1)由已知可得的面积为.

.故椭圆的标准方程为.

(2)设,依题意直线的斜率存在,故设的方程为

联立

,即

.∵是椭圆的上顶点,故

,∴,即

,或

∵直线不过点,∴,直线过定点

的面积

.则,函数

单调递减,故.

的面积取得最大值时,,直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,点中点,底面为梯形,.

(1)证明:平面

(2)求平面与平面所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加某次知识竞赛测试得学生中随机抽取60名学生,将其成绩(百分制均为整数)分成6后得到如下部分频率直方分布图,观察图形得信息,回答下列问题:

1)求分数在内的频率;

2)若用样本估计总体,已知该校参加知识竞赛一共有300人,请估计本次考试成绩不低于80分的人数;

3)统计方法中,同一组数据常用该组区间中点值作为代表,据此估计本次考试的平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线与直线平行.

1)求实数的值;

2)若函数上恰有两个零点,求实数的取值范围.

3)记函数,设是函数的两个极值点,若,且恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆()的左、右焦点分别是,点的上顶点,点上,,且.

1)求的方程;

2)已知过原点的直线与椭圆交于两点,垂直于的直线且与椭圆交于两点,若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将标号为1,2,…,20的20张卡片放入下列表格中,一个格放入一张卡片.把每列标号最小的卡片选出,将这些卡片中标号最大的数设为a;把每行标号最大的卡片选出,将这些卡片中标号最小的数设为b.

甲同学认为a有可能比b大,乙同学认为a和b有可能相等.那么甲乙两位同学中说法正确的同学是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,点为棱的中点

1)证明:

2)若为棱上一点,满足,求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,其中数列的前项和,

1)若数列是首项为.公比为的等比数列,求数列的通项公式;

2)若求证:数列满足,并写出的通项公式;

3)在(2)的条件下,设,求证中任意一项总可以表示成该数列其它两项之积.

查看答案和解析>>

同步练习册答案