精英家教网 > 高中数学 > 题目详情

设数列{an}是等差数列,a1+a2+a3=-24,a19=26,则此数列{an}前20项和等于________.

180
分析:由等差数列的性质可得:a2+a19=18,而S20==10(a1+a20)=10(a2+a19),代入即可.
解答:由等差数列的性质可得:a1+a2+a3=3a2=-24,即a2=-8,
故a2+a19=-8+26=18,由等差数列的求和公式可得:
数列{an}前20项和S20==10(a1+a20)=10(a2+a19)=10×18=180.
故答案为:180
点评:本题考查等差数列的性质和求和公式,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}是等差数列,数列{bn}是各项都为正数的等比数列,且a1=b1=1,b1+b2=a2,b3是a1与a4的等差中项.
(I)求数列{an},{bn}的通项公式;
(II)求数列{
anbn
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄一模)设数列{an}满足a1=1,a2=2,对任意的n∈N*,an+2是an+1与an的等差中项.
(1)设bn=an+1-an,证明数列{bn}是等比数列,并求出其通项公式;
(2)写出数列{an}的通项公式(不要求计算过程),令cn=
3
2
n(
5
3
-an)
,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市望子成龙学校高二(上)期中数学试卷(解析版) 题型:解答题

设数列{an}是等差数列,数列{bn}是各项都为正数的等比数列,且a1=b1=1,b1+b2=a2,b3是a1与a4的等差中项.
(I)求数列{an},{bn}的通项公式;
(II)求数列{}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省临沂市重点高中高二(上)期末数学试卷(理科)(解析版) 题型:解答题

设数列{an}是等差数列,数列{bn}是各项都为正数的等比数列,且a1=b1=1,b1+b2=a2,b3是a1与a4的等差中项.
(I)求数列{an},{bn}的通项公式;
(II)求数列{}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市望子成龙学校高二(上)期中数学试卷(解析版) 题型:解答题

设数列{an}是等差数列,数列{bn}是各项都为正数的等比数列,且a1=b1=1,b1+b2=a2,b3是a1与a4的等差中项.
(I)求数列{an},{bn}的通项公式;
(II)求数列{}的前n项和Sn

查看答案和解析>>

同步练习册答案