精英家教网 > 高中数学 > 题目详情

【题目】已知函数 (其中a为非零实数),且方程 有且仅有一个实数根. (Ⅰ)求实数a的值;
(Ⅱ)证明:函数f(x)在区间(0,+∞)上单调递减.

【答案】解:(Ⅰ)由 ,得

又a≠0,即二次方程ax2﹣4x+4﹣a=0有且仅有一个实数根(且该实数根非零),

所以△=(﹣4)2﹣4a(4﹣a)=0,

解得a=2(此时实数根非零).

(Ⅱ)由(Ⅰ)得:函数解析式

任取0<x1<x2

则f(x1)﹣f(x2

=

=

∵0<x1<x2,∴x2﹣x1>0,2+x1x2>0,x1x2>0,

∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),

∴函数f(x)在区间(0,+∞)上单调递减.


【解析】(Ⅰ)根据二次函数的性质得到△=0,求出a的值即可;(Ⅱ)根据函数单调性的定义证明函数的单调性即可.
【考点精析】本题主要考查了函数单调性的判断方法的相关知识点,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(题类A)以椭圆 +y2=1(a>1)短轴端点A(0,1)为直角顶点,作椭圆内接等腰直角三角形,试判断并推证能作出多少个符合条件的三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1 , y1),B(x2 , y2)均在抛物线上.

(1)求该抛物线方程;
(2)若AB的中点坐标为(1,﹣1),求直线AB方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a为实数,函数f(x)=ex﹣2x+2a,x∈R.
(1)求函数f(x)的极值;
(2)求证:当a>ln2﹣1且x>0时,ex>2x﹣2a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点P(m,n)的直线l与直线l0:x+2y+4=0垂直. (Ⅰ) 若 ,且点P在函数 的图象上,求直线l的一般式方程;
(Ⅱ) 若点P(m,n)在直线l0上,判断直线mx+(n﹣1)y+n+5=0是否经过定点?若是,求出该定点的坐标;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+ +x(a>0).若曲线y=f(x)在点(1,f(1))处的切线与直线x﹣2y=0垂直, (Ⅰ)求实数a的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,则输出的S=(
A.14
B.30
C.20
D.55

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)经过点(1, ),且离心率等于 . (Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(2,0)作直线PA,PB交椭圆于A,B两点,且满足PA⊥PB,试判断直线AB是否过定点,若过定点求出点坐标,若不过定点请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个顶点是A(4,0),B(6,7),C(0,3).
(1)求过点A与BC平行的直线方程.
(2)求过点B,并且在两个坐标轴上截距相等的直线方程.

查看答案和解析>>

同步练习册答案