【题目】如图,空间几何体中,是边长为2的等边三角形,,,,平面平面,且平面平面,为中点.
(1)证明:平面;
(2)求二面角平面角的余弦值.
【答案】(1)证明见解析(2)
【解析】
(1)分别取,的中点,,连接,,,,,要证明平面,只需证明面∥面即可.
(2)以点为原点,以为轴,以为轴,以为轴,建立空间直角坐标系,
分别计算面的法向量,面的法向量可取,并判断二面角为锐角,再利用计算即可.
(1)证明:分别取,的中点,,连接,,,,.
由平面平面,且交于,平面,有平面,
由平面平面,且交于,平面,有平面
,所以∥,又平面,平面,所以∥平面
,由,有,∥,又平面,平面
,所以∥平面,
由∥平面,∥平面,,所以平面∥平面,所以∥平面
(2)以点为原点,以为轴,以为轴,以为轴,建立如图所示空间直角坐标系
由面,所以面的法向量可取,
点,点,点,,,
设面的法向量,所以
,取,
二面角的平面角为,则为锐角.
所以
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点坐标为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点,过点的直线(与轴不重合)与椭圆交于两点,直线与直线相交于点,试证明:直线与轴平行.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线C:()的焦点F在直线上,平行于x轴的两条直线,分别交抛物线C于A,B两点,交该抛物线的准线于D,E两点.
(1)求抛物线C的方程;
(2)若F在线段上,P是的中点,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线E:过点Q(1,2),F为其焦点,过F且不垂直于x轴的直线l交抛物线E于A,B两点,动点P满足△PAB的垂心为原点O.
(1)求抛物线E的方程;
(2)求证:动点P在定直线m上,并求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体中,是棱上动点,下列说法正确的是( ).
A.对任意动点,在平面内存在与平面平行的直线
B.对任意动点,在平面内存在与平面垂直的直线
C.当点从运动到的过程中,与平面所成的角变大
D.当点从运动到的过程中,点到平面的距离逐渐变小
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】台球是一项国际上广泛流行的高雅室内体育运动,也叫桌球(中国粤港澳地区的叫法)、撞球(中国台湾地区的叫法)控制撞球点、球的旋转等控制母球走位是击球的一项重要技术,一次台球技术表演节目中,在台球桌上,画出如图正方形ABCD,在点E,F处各放一个目标球,表演者先将母球放在点A处,通过击打母球,使其依次撞击点E,F处的目标球,最后停在点C处,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,则该正方形的边长为( )
A.50cmB.40cmC.50cmD.20cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com