精英家教网 > 高中数学 > 题目详情
1.函数f(x)=$\left\{\begin{array}{l}{{3}^{x-2}(x<2)}\\{lo{g}_{3}({x}^{2}-1)(x≥2)}\end{array}\right.$,若f(a)=1,则a的值是(  )
A.1或2B.2C.1D.1或-2

分析 由已知得当a≥2时,f(a)=$lo{g}_{3}({a}^{2}-1)$=1;当a<2时,f(a)=3a-2=1.由此能求出a的值.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{3}^{x-2}(x<2)}\\{lo{g}_{3}({x}^{2}-1)(x≥2)}\end{array}\right.$,f(a)=1,
∴当a≥2时,f(a)=$lo{g}_{3}({a}^{2}-1)$=1,解得a=2或a=-2(舍);
当a<2时,f(a)=3a-2=1,解得a=2(舍).
综上,a的值是2.
故选:B.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知a、b、c∈R,a>b>c,a+b+c=0,若实数x,y满足不等式组$\left\{\begin{array}{l}{x≥0}\\{x+y≤4}\\{bx+ay+c≥0}\end{array}\right.$,则目标函数z=2x+y(  )
A.有最大值,无最小值B.无最大值,有最小值
C.有最大值,有最小值D.无最大值,无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设方程f(x,y)=0的解集非空.如果命题“坐标满足方程f(x,y)=0的点都在曲线C上”是不正确的,有下面5个命题:
①坐标满足f(x,y)=0的点都不在曲线C上;
②曲线C上的点的坐标都不满足f(x,y)=0;
③坐标满足f(x,y)=0的点不都在曲线C上;
④一定有不在曲线C上的点,其坐标满足f(x,y)=0;
⑤坐标满足f(x,y)=0的点有些在曲线C上,有些不在曲线C上.
则上述命题正确的是③④.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且$2\overrightarrow{{F_1}{F_2}}+\overrightarrow{{F_2}Q}$=$\overrightarrow 0$.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若过A,Q,F2三点的圆恰好与直线$\sqrt{7}$x-y+$\sqrt{7}$+$4\sqrt{2}$=0相切,求椭圆C的方程;
(Ⅲ)过F2的直线L与(Ⅱ)中椭圆C交于不同的两点M、N,则△F1MN的内切圆的面积是否存    在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合M={x||x-1|≤2},N={x|2x>1},则M∩N={x|0<x≤3},M∪∁RN={x|x≤3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤1}\\{2sin(\frac{π}{12}x)-1,x>1}\end{array}\right.$,则f[f(2)]=(  )
A.-2B.-1C.2${\;}^{\sqrt{3}-1}$-2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知△ABC三边分别为a,b,c,且a2+c2=b2+ac,则边b所对应的角B大小为60°;此时,如果AC=2$\sqrt{3}$,则$\overrightarrow{AB}$$•\overrightarrow{AC}$的最大值为6+4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x>0,y>0,且x2-2xy+4y2=1.
(Ⅰ)求证:x+2y≤2;
(Ⅱ)求y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-3上,过点A作圆C的切线,求切线方程;
(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标的取值范围.

查看答案和解析>>

同步练习册答案