精英家教网 > 高中数学 > 题目详情
14.定积分$\int_1^e{({\frac{1}{x}+{e^x}})}$dx=ee-e+1.

分析 欲求定积分,先求原函数,由于(lnx)′=$\frac{1}{x}$,(ex)′=ex,故ex+$\frac{1}{x}$的原函数是ex+lnx,从而问题解决.

解答 解:∵(lnx)′=$\frac{1}{x}$,(ex)′=ex
∴$\int_1^e{({\frac{1}{x}+{e^x}})}$dx=${∫}_{1}^{e}$exdx+${∫}_{1}^{e}$lnxdx=ex|${\;}_{1}^{e}$+lnx|${\;}_{1}^{e}$=ee-e1+lne-ln1=ee-e+1;
故答案为:ee-e+1.

点评 本小题主要考查定积分、定积分的应用、原函数的概念解法等基础知识,考查运算求解能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,在空间四边形ABCD中,连接AC,BD,E,F分别是边AC.BD的中点,设$\overrightarrow{AB}$=$\overrightarrow{a}$-2$\overrightarrow{c}$,$\overrightarrow{CD}$=5$\overrightarrow{a}$+6$\overrightarrow{b}$-8$\overrightarrow{c}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$表示$\overrightarrow{EF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.依法纳税是每个公民应尽的义务,国家征收个人工资、薪金所得税是分段计算的:总收入不超过3500元,免征个人工资、薪金所得税;超过3500元的部分需征税,设全月应纳税额(所得额指工资、薪金中应纳税的部分)为x,x=(全月总收入-“三险一金”-扣除数)元,税率如表所示:
级  数全月应纳税所得额x税  率
1不超过1500元的部分3%
2超过1500元至4500元的部分10%
3超过4500元至9000元的部分20%
4超过9000元至35000元的部分25%
5超过35000元至55000元的部分30%
6超过55000元至80000元的部分35%
7超过80000元的部分45%
(1)若应纳税所得额为f(x),试用分段函数表示1~3级纳税额f(x)的计算公式;
(2)某单位按工资额的19%为其职工缴纳“三险一金”(养老保险8%、医疗保险2%、失业保险1%、住房公积金8%),2014年1月份该单位某职工缴税40.8元,请问该职工该月总收入多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在极坐标系中有如下三个结论:
①点P在曲线C上,则点P的极坐标满足曲线C的极坐标方程;
②tanθ=1与θ=$\frac{π}{4}$表示同一条曲线;  
③ρ=3与ρ=-3表示同一条曲线. 
在这三个结论中正确的是(  )
A.①③B.C.②③D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.以直角坐标系的原点O为极点,X轴的正半轴为极轴,建立坐标系,两个坐标系取相同的单位长度.已知直线L的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=tsina\end{array}\right.$(t为参数,0<a<π),曲线C的极坐标方程为ρsin2θ=4cosθ
(1)求曲线C的直角坐标方程
(2)设直线L与曲线C相交于A,B两点,|AB|=8时,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$\overrightarrow{OB}$=(2,0),$\overrightarrow{OC}$=(1,2),$\overrightarrow{CA}$=(3,1),则$\overrightarrow{OA}$与$\overrightarrow{OB}$夹角的正弦值为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设m、n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:
①若m⊥α,n∥α,则m⊥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;
③若m⊥α,n⊥α,则m∥n;④若α⊥β,m⊥β,则m∥α;
其中正确命题的序号是(  )
A.①②③④B.①②③C.②④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)=m+$\frac{2}{{{3^x}-1}}$是奇函数,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点A(-1,0)和点B(1,1)在直线x+y-a=0的两侧,则a的取值范围是(  )
A.-2<a<1B.a<-2或a>1C.-1<a<2D.a<-1或a>2

查看答案和解析>>

同步练习册答案