精英家教网 > 高中数学 > 题目详情
10.如图,在三棱柱ABC-A1B1C1中,B1P=2PA1,C1Q=2QA1,求证:直线AA1,BP,CQ相交于一点.

分析 根据平行线分线段成比例定理,可得PQ∥B1C1∥BC,PQ=$\frac{1}{3}$B1C1=$\frac{1}{3}$BC,结合梯形的几何特征和公理3,可得结论.

解答 证明:∵B1P=2PA1,C1Q=2QA1
故PQ∥B1C1∥BC,PQ=$\frac{1}{3}$B1C1=$\frac{1}{3}$BC,
故BP与CQ延长后交于一点O,
又由BP?平面AA1B1B,CQ?平面AA1C1C,平面AA1B1B∩平面AA1C1C=AA1
故O∈AA1
即直线AA1,BP,CQ相交于一点O.

点评 本题考查的知识点是平面的基本性质及推论,平行线分线段成比例定理,是平面几何与立体几何的综合应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设圆C的极坐标方程为ρ=2,以极点为直角坐标系的原点,极轴为x轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆C上的一点M(m,s)作垂直于x轴的直线l:x=m,设l与x轴交于点N,向量$\overrightarrow{OQ}=\overrightarrow{OM}+\overrightarrow{ON}$.
(Ⅰ)求动点Q的轨迹方程;
(Ⅱ)设点R(1,0),求$|{\overrightarrow{RQ}}|$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若偶函数f(x)在(-∞,0)上是减函数,则满足f(1)≤f(a)的实数a的取值范围是(  )
A.[1,+∞)B.(-∞,-1]C.(-∞,-1]∪[1,+∞)D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若a=log2x,b=$\frac{2}{x}$,则“a>b”是“x>1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,∠A=45°,a=$\sqrt{5}$,b=4,满足条件的△ABC(  )
A.不存在B.有一个C.有两个D.有无数多个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1(x≤0)}\\{f(x-1)(x>0)}\end{array}\right.$,若函数y=f(x)-x-$\frac{a}{2}$恰有两个不同的零点,则实数a的取值范围是(  )
A.(0,2)B.(-∞,2)C.(-∞,2]D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足:Sn=1-an(n∈N+),其中Sn为数列{an}的前n项和.
(Ⅰ)证明:数列{an}是等比数列;
(Ⅱ)假设已知an=($\frac{1}{2}$)n,n∈N+,若数列{bn}满足:bn=$\frac{n}{{a}_{n}}$(n∈N+),试求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=sinx与y=cos(2x+θ),它们的图象有一个交点的横坐标为$\frac{π}{6}$,若θ>0,则θ的最小值是$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.写出与下列各角终边相同的角的集合,并判断它们分别为第几象限的角.
(1)65°;
(2)120°;
(3)-125°;
(4)300°.

查看答案和解析>>

同步练习册答案