精英家教网 > 高中数学 > 题目详情

(本题满分14分)

在平面直角坐标系中,已知向量),,动点的轨迹为T.

(1)求轨迹T的方程,并说明该方程表示的曲线的形状;

(2)当时,已知,试探究是否存在这样的点是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积?若存在,求出点Q的坐标,若不存在,说明理由.

时,方程表示两条与x轴平行的直线;(答方程表示两条直线不扣分)--------------- ------3分

时,方程表示以原点为圆心,4为半径的圆;(答方程表示圆不扣分)- ---------4分

时,方程表示椭圆;--------------------------------5分

时,方程表示双曲线.-

.-


解析:

解:(1)∵ ∴

 即------------------------------------2分

时,方程表示两条与x轴平行的直线;(答方程表示两条直线不扣分)--------------- ------3分

时,方程表示以原点为圆心,4为半径的圆;(答方程表示圆不扣分)- ---------4分

时,方程表示椭圆;--------------------------------5分

时,方程表示双曲线.-------------- ---------------------6分

(2)由(1)知,当时,轨迹T的方程为:.

连结OE,易知轨迹T上有两个点A,B满足,

分别过A、B作直线OE的两条平行线.

∵同底等高的两个三角形的面积相等

∴符合条件的点均在直线上. --------------------------------7分

   ∴直线的方程分别为:--------8分

设点 ( )∵在轨迹T内,∴-----------------------9分

分别解  得

为偶数,在,对应的

,对应的-----------------------13分

∴满足条件的点存在,共有6个,它们的坐标分别为:

.------------------------------------------14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABEAEEBBC=2,上的点,且BF⊥平面ACE

(1)求证:AEBE;(2)求三棱锥DAEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题

(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求实数m的值

(Ⅱ)若ACRB,求实数m的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题

(本题满分14分)

已知点是⊙上的任意一点,过垂直轴于,动点满足

(1)求动点的轨迹方程; 

(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题

(本题满分14分)已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有根?如果有根,请求出一个长度为的区间,使

;如果没有,请说明理由?(注:区间的长度为).

 

查看答案和解析>>

同步练习册答案