(本题满分14分)
在平面直角坐标系中,已知向量(),,动点的轨迹为T.
(1)求轨迹T的方程,并说明该方程表示的曲线的形状;
(2)当时,已知、,试探究是否存在这样的点: 是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积?若存在,求出点Q的坐标,若不存在,说明理由.
当时,方程表示两条与x轴平行的直线;(答方程表示两条直线不扣分)--------------- ------3分
当时,方程表示以原点为圆心,4为半径的圆;(答方程表示圆不扣分)- ---------4分
当且时,方程表示椭圆;--------------------------------5分
当时,方程表示双曲线.-
.-
解:(1)∵ ∴
得 即------------------------------------2分
当时,方程表示两条与x轴平行的直线;(答方程表示两条直线不扣分)--------------- ------3分
当时,方程表示以原点为圆心,4为半径的圆;(答方程表示圆不扣分)- ---------4分
当且时,方程表示椭圆;--------------------------------5分
当时,方程表示双曲线.-------------- ---------------------6分
(2)由(1)知,当时,轨迹T的方程为:.
连结OE,易知轨迹T上有两个点A,B满足,
分别过A、B作直线OE的两条平行线、.
∵同底等高的两个三角形的面积相等
∴符合条件的点均在直线、上. --------------------------------7分
∵ ∴直线、的方程分别为:、--------8分
设点 ( )∵在轨迹T内,∴-----------------------9分
分别解与 得与
∵∴为偶数,在上,对应的
在上,对应的-----------------------13分
∴满足条件的点存在,共有6个,它们的坐标分别为:
.------------------------------------------14分
科目:高中数学 来源: 题型:
π |
3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,为上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求实数m的值
(Ⅱ)若ACRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点是⊙:上的任意一点,过作垂直轴于,动点满足。
(1)求动点的轨迹方程;
(2)已知点,在动点的轨迹上是否存在两个不重合的两点、,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数.
(1)求函数的定义域;
(2)判断的奇偶性;
(3)方程是否有根?如果有根,请求出一个长度为的区间,使
;如果没有,请说明理由?(注:区间的长度为).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com